Lineare Algebra II
Zusammenfassung
Michael Jaeger
22. Januar 2001

1 „Bürgerliche Vektorrechnung“

Es sei \mathbb{E}^3 der 3-dimensionale Euklidische Raum und $V = T(\mathbb{E})$ der Vektorraum der Translationen von \mathbb{E}^3.

- **Skalarprodukt**: Speziell im \mathbb{R}^n gibt es z.B.

$$ \forall \mathbf{v}, \mathbf{w} \in V : (\mathbf{v}, \mathbf{w}) := ||\mathbf{v}|| \cdot ||\mathbf{w}|| \cdot \cos \varphi \quad (\in \mathbb{R}) $$

Allgemein gilt für ein Skalarprodukt:

1. $(\mathbf{v}, \mathbf{w}) = (\mathbf{w}, \mathbf{v})$ (Symmetrie)
2. $(\alpha \mathbf{v}, \mathbf{w}) = \alpha (\mathbf{v}, \mathbf{w}) \quad \forall \alpha \in \mathbb{R}$ (Bilinearität)
3. $(\mathbf{v} + \mathbf{v}', \mathbf{w}) = (\mathbf{v}, \mathbf{w}) + (\mathbf{v}', \mathbf{w})$ (Bilinearität)

Es ist $||\mathbf{w}|| \cdot \cos \varphi$ die Länge der Projektion von \mathbf{w} auf \mathbf{v}. Das Skalarprodukt ist positiv orientiert, und es gilt

- $(\mathbf{v}, \mathbf{w}) = 0 \Leftrightarrow \mathbf{v} = 0$ oder $\mathbf{w} = 0$ oder $\varphi = \frac{\pi}{2}, \frac{3\pi}{2}$.

- $(\mathbf{v}, \mathbf{v}) = ||\mathbf{v}||^2$, $(\mathbf{v}, \mathbf{v}) = 0 \Leftrightarrow \mathbf{v} = \mathbf{0}$

- Man kann jeden Vektor $\mathbf{v} \neq \mathbf{0} \in V$ schreiben als $||\mathbf{v}|| \cdot \frac{\mathbf{v}}{||\mathbf{v}||}$. Wenn $\mathbf{u} \in V$ ein Einheitsvektor ist, dann sind seine Koordinaten $((u_1, e_1), (u_2, e_2), (u_3, e_3) = (\cos \varphi_1, \cos \varphi_2, \cos \varphi_3)$ mit $\sum_{i=1}^3 \cos^2 \varphi_i = 1$.

- **Positiv orientiert**: Die Basis a, b, c von $T(\mathbb{E})$ heißt positiv orientiert, wenn gilt: „Dreht man a um weniger als π nach b, dann rückt eine mitgedrehte Rechtsschraube in den von c anvisierten Halbraum vor.“

- **Vektorprodukt**: Seien $a, b \in V = T(\mathbb{E}^3)$. Dann definiere das Produkt $a \times b \in V$ wie folgt:

1. $a \times b$ ist senkrecht zu a und b
2. $||a \times b|| = ||a|| \cdot ||b|| \cdot \sin \varphi$
3. $(a, b, a \times b)$ ist positiv orientiert (nur sinnvoll, wenn a, b linear unabhängig)

Eigenschaften von $a \times b$:

1. $a \times b = 0 \Leftrightarrow a = \mathbf{0}$ oder $b = \mathbf{0}$ oder $\varphi = 0, \pi$
2. $||a \times b||$ = Fläche des von a, b aufgespannten Parallelogramms
3. $b \times a = -a \times b$ insbes. $a \times a = \mathbf{0}$
4. \(e_1 \times e_2 = e_3, e_2 \times e_3 = e_1 \) und \(e_2 \times e_1 = -e_3 \) etc.
5. \((\lambda \cdot a) \times b = \lambda \cdot (a \times b) \) \(\lambda \in \mathbb{R} \)
6. \(a \times (b + c) = a \times b + a \times c \)
7. Koordinatenformel: \((\alpha_1, \alpha_2, \alpha_3) \times (\beta_1, \beta_2, \beta_3) = (\alpha_2\beta_3 - \alpha_3\beta_2, \alpha_3\beta_1 - \beta_3\alpha_1, \alpha_1\beta_2 - \alpha_2\beta_1)\)

- **Spatprodukt:** Auch gemischtes Produkt:

\[
(a, b, c) := (a \times b, c)
\]

Also ist: \(|(a, b, c)| = |(a \times b, c)| = |a \times b| \cdot ||c|| \cdot \cos \varphi| = \text{Volumen des von } a, b, c \text{ aufgespannten Parallelopips}|

Dabei ist

\[
(a, b, c) = \begin{cases}
+\text{Vol.} & a, b, c \text{ pos. orientiert} \\
-\text{Vol.} & a, b, c \text{ neg. orientiert}
\end{cases}
\]

Es gilt also: \(((a \times b), c) = (c \times a, b)\) ...

\[
((a \times \beta), \gamma) = (a, \beta, \gamma) \iff \left((\begin{pmatrix} \alpha_2 \\ \alpha_3 \\ \beta_3 \\ \beta_2 \\ \beta_1 \end{pmatrix}, \begin{pmatrix} \alpha_1 \\ \alpha_3 \\ \beta_3 \\ \beta_1 \\ \beta_2 \end{pmatrix}, \begin{pmatrix} \gamma_1 \\ \gamma_2 \\ \gamma_3 \end{pmatrix}) = \begin{pmatrix} \alpha_1 & \beta_1 & \gamma_1 \\ \alpha_2 & \beta_2 & \gamma_2 \\ \alpha_3 & \beta_3 & \gamma_3 \end{pmatrix}\right)
\]

- **Grassmann-Identität:**

\[
x = a \times (b \times c)
\]

Es gilt:

1. \(x \) senkrecht zu \(b \times c \), also \(x = \lambda b + \mu c \)
2. \((x, a) = 0 \Rightarrow \lambda = \tau(a, c) \mu = \tau(a, b) \) für ein \(\tau \in \mathbb{R} \). Es ist also:

\[
x = \tau ((a, c)b - (a, b)c),
\]

wobei \(\tau \) auch 1 sein könnte \((\Rightarrow a \times (b \times c) = (a, c) \cdot b - (a, b) \cdot c)\).

- **Jacobi-Identität:**

\[
a \times (b \times c) + b \times (c \times a) + c \times (a \times b) = 0
\]

- **Lagrange-Identität:**

\[
(a \times b, c \times d) = (a, c)(b, d) - (a, d)(b, c)
\]

- **Weitere Identitäten:**

\[
(a \times b) \times (c \times d) = (c, d, a)b - (c, d, b)a
\]

\[
(a \times b, b \times c, c \times a) = (a, b, c)^2
\]

1.1 **Euklidische Vektorräume**

- **Bilinearform:** \(F : V \times V \rightarrow K \) mit:

 - \(F(\alpha v + \alpha'v', w) = \alpha F(v, w) + \alpha' F(v', w) \) und
 - \(F(v, \beta w + \beta'w') = \beta F(v, w) + \beta' F(v, w') \) \(\forall \alpha, \alpha', \beta, \beta' \in K, v, v', w, w' \in V \).

 \(F \) ist durch die Matrix \(c = (F(v_i, v_j))_{i,j} \) bestimmt (wenn \(v_1, \ldots, v_n \) eine Basis ist).

- **\(GL_n \):** \(GL_n = \{ A \mid A \in M_n \text{ mit } A \text{ ist regulär} \} \)
- **Kronecker Symbol** \(\delta \): Für das Kroneckersymbol gilt:
\[
\delta_{ij} = \begin{cases}
1 & i = j \\
0 & i \neq j
\end{cases}
\]

- **Basistransformation**: Ziel ist die Transformation einer Basis \(\{v_1, \ldots, v_n\} \) in eine neue Basis \(\{v'_1, \ldots, v'_n\} \), wobei gilt
\[
v'_k = \sum_i \tau_{ik} v_i
\]
Es ist also \((c')_{k,l} = \sum_i \tau_{ik} c_{ij} \tau_{jl} \) und damit
\[
c' = T^t c T
\]
Jede Matrix \(c \in M_n(K) \) definiert bzgl. einer Basis \(v_1, \ldots, v_n \) eine bilineare Abbildung. Ausserdem ist
\[
(\sum_{i=1}^n \alpha_i v_i, \sum_{j=1}^n \beta_j v_j) = \sum_{i,j=1}^n \alpha_i \beta_j
\]

das Standard-Skalarprodukt im \(\mathbb{R}^n \), \((x,y) = \sum_{i=1}^n x_i y_i \) mit Matrix \(E_n = (\delta_{ij}) \). Also ist auch jede Matrix der Form \(c = T^t c T \) mit \(T \in GL_n(\mathbb{R}) \) die Matrix eines Skalarproduktes.

- \(c \sim c' \): \(c \) und \(c' \) definieren dieselbe Bilinearform bzgl. zwei Basen \(\Leftrightarrow \) Es gibt eine \(T \in GL_n(K) \) mit \(c' = T^t c T \)

\(\sim \) ist Äquivalenzrelation:

* \(c \sim c \) \((c = E_n c E_n) \)
* \(c \sim c' \Rightarrow c' \sim c \)
* \(c \sim c' \sim c'' \Rightarrow c \sim c'' \)

- **Positiv definit**: Eine Bilinearform \(F : V \times V \rightarrow \mathbb{R} \) heisst positiv definit, wenn gilt

* \(F(v,v) \geq 0 \ \forall v \in V \) und
* \(F(v,v) = 0 \ \Leftrightarrow \ v = \bar{0} \)

(Bem.: \(F(v,\bar{0}) = F(v,0 \cdot w) = 0 \cdot F(v,w) = 0 \))

- **Skalarprodukt**: Eine symmetrische \((F(v,w) = F(w,v)) \), positiv definite Bilinearform. Jede Matrix der Form \(C = T^t T \), \(T \in GL_n(\mathbb{R}) \) definiert ein Skalarprodukt!

- **Euklidischer Vektorraum**: Ein mit einem Skalarprodukt versehener Vektorraum. Z.B. \(\mathbb{R}^n \) mit herkömmlichem Skalarprodukt und im \(\mathbb{R}^2 \), falls \(c = \begin{pmatrix} a & b \\ b & c \end{pmatrix} \) symmetrisch, positive Diagonale und positive Determinante.

1.2 Norm

- **Cauchy-Schwarzche Ungleichung**:

\[
(v,w)^2 \leq (v,v)(w,w) \ \forall v,w \in V
\]

\((v,v) \ \text{linear abhängig} \). Spezialfälle: \(x,y \in \mathbb{R}^n \) mit Standardskalarprodukt

1. \((\sum_{i=1}^n x_i y_i)^2 \leq (\sum_{i=1}^n x_i^2)(\sum_{i=1}^n y_i^2) \)
2. \(f,g : [a,b] \rightarrow \mathbb{R} \) stetig und \([a,b] \subset \mathbb{R} \)

\[
V = [a,b], \quad (f,g) := \int_a^b f(t) g(t) dt \\
(f,g)^2 = \int_a^b f(t)^2 g(t)^2 dt \\
(f,g)^2 \leq (\int_a^b f(t)^2 dt)(\int_a^b g(t)^2 dt)
\]

- **Norm**: Für \(v \in V \) sei \(\|v\| := \sqrt{(v,v)} \in \mathbb{R}_{\geq 0} \). Es gilt:
1. $||\alpha v|| = |\alpha| \cdot ||v|| \quad \forall \alpha \in \mathbb{R}, v \in V$
2. $||v + w||^2 = (v + w, v + w) \leq (||v|| + ||w||)^2$, also:
 $||v + w|| \leq ||v|| + ||w||$ (Dreiecksungleichung)
3. $||v|| \geq 0, \quad ||v|| = 0 \iff v = 0$

- Winkel zwischen zwei Vektoren: $\arccos \frac{\langle v, w \rangle}{||v|| ||w||}$

1.3 Orthogonalität

- **Orthogonal**: $v, w \in V$ heissen orthogonal $(v \perp w)$, wenn $\langle v, w \rangle = 0$ ist.
 \perp ist zu allen Vektoren orthogonal. Wenn $\langle v, w \rangle = 0$ für alle $w \in V$, dann ist $v = \perp$, da
 $(v, v) = ||v||^2 = 0 \iff v = \perp$

- **Orthogonalsystem**: Eine Familie von Vektoren v_1, v_2, \ldots heisst ein Orthogonalsystem, wenn
 $v_i \perp v_j \quad \forall i \neq j$.
 Ein Orthogonalsystem bestehend aus Vektoren $\neq 0$ ist linear unabhängig.
 Sind V_1, \ldots, V_p Unterräume mit $V_i \perp V_j$ $(i \neq j)$, dann ist $W = \text{Span}(V_1, \ldots, V_p) = V_1 \oplus \ldots \oplus V_p$.
 $(W = V_1 \oplus \ldots \oplus V_p$ bedeutet: jeder Vektor $v \in W$ hat eine eindeutige Darstellung $v = v_1 + \ldots + v_p \quad v_j \in V_i$)

- **Orthonormalsystem**: Ein Orthogonalsystem besteht aus lauter Vektoren v_i mit $||v_i|| = 1$.
 Jeder euklidische Vektorraum V mit $\dim V < \infty$ besitzt eine Orthonormalbasis.
 Wenn also v_1, \ldots, v_m mit $C = ((v_i, v_j))$ eine beliebige Basis ist, und e_1, \ldots, e_n eine orthogonale
 Basis ist, dann hat die Basistransformation gegeben durch $T \in GL_n(\mathbb{R})$ die Matrix zu dieser Basis:
 $E^n = ((e_i, e_j))$.
 Wenn C die Matrix eines Skalarproduktes ist, dann gibt es ein $T \in GL_n(\mathbb{R})$ mit $C = T^tT$ und
 umgekehrt.

- **Gram-Schmidttsche Orthogonalisierung**: Gegeben: linear unabh. System v_1, v_2, \ldots Ge
 sucht: Orthogonalsystem w_1, w_2, \ldots beides mit $\text{Span}(v_1, \ldots, v_i) = \text{Span}(w_1, \ldots, w_i) \quad \forall i$.

 1. $w_1 := v_1 \neq \perp$
 2. Ansatz: $v_2 = \alpha w_1 + w_2$ mit $(w_1, w_2) = (v_1, w_2) = 0$.
 $(v_2, v_1) = \alpha \cdot (v_1, v_1) + (v_2, v_1) = \alpha \cdot (v_1, v_1)$
 also $v_2 = \frac{(v_2, v_1)}{(v_1, v_1)} w_1 + w_2$ und $w_2 = v_2 - \frac{(v_2, w_1)}{(w_1, w_1)} w_1$
 3. $w_3 = v_3 - \alpha_1 w_1 - \alpha_2 w_2$ mit $(w_3, w_1) = 0, \quad (w_3, w_2) = 0$
 $0 = (v_3, w_1) - \alpha_1 (w_1, w_1) \quad \Rightarrow \quad \alpha_1 = \frac{(v_3, w_1)}{(w_1, w_1)}$
 $0 = (v_3, w_2) - \alpha_2 (w_2, w_2) \quad \Rightarrow \quad \alpha_2 = \frac{(v_3, w_2)}{(w_2, w_2)}$
 $\text{Span}(v_1) = \text{Span}(w_1), \text{Span}(v_1, v_2) = \text{Span}(w_1, w_2) \quad \text{mit } w_2 \neq 0, \text{ da } \dim \text{Span}(v_1, \ldots, v_k) = $
 $\dim \text{Span}(w_1, \ldots, w_k)$.

Die Matrix T, die durch das Verfahren entsteht ist dreieckig:

$$C = \begin{pmatrix} 1 & \cdots & \tau \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 1 \end{pmatrix} \begin{pmatrix} d_1 & 0 & \cdots \\ \cdots & \ddots & \cdots \\ 0 & \cdots & d_n \end{pmatrix} = \begin{pmatrix} 1 & \tau \\ 0 & 1 \end{pmatrix} = (T^t)^t DT' = (\sqrt{D}T')^t \cdot (\sqrt{D}T')$$

Beispiel: $V = \mathbb{R}[t]$ Polynome, VR über \mathbb{R} und $(p(t), q(t)) := \int_{-1}^1 p(t)q(t)dt$ und $V \subseteq C^0[-1,1]$
mit Basis $v = t, t^2, t^3, \ldots$ nicht orthogonal! Nach Anwendung von Gram-Schmidt ergibt sich
$w_0 = v_0 = 1, w_1 = t, w_2 = t^2 - \frac{x}{3}, w_3 = t^3 - \frac{x}{4}, \ldots$ die sogenannten **Legendre-Polynome.**
- $X \perp Y$: $X,Y \subseteq V$, X orthogonal zu Y $(X \perp Y)$, wenn $(x,y) = 0 \quad \forall x \in X, y \in Y$

$X \perp Y \iff \text{Span}(X) \perp \text{Span}(Y)$ mit $\text{Span}(X) = \{ \Sigma \alpha_i x_i \mid x_i \in X \}$

Beispiel: $v = (\alpha, \beta) \perp w = (-\beta, \alpha)$

Sind e_1, \ldots, e_n orthogonal und v_1, \ldots, v_n beliebig mit $v_k = \Sigma_{i=1}^n \alpha_{ik} e_i$ und $A = (\alpha_{ik})$, dann ist v_1, \ldots, v_n orthogonal, wenn $A^t A = E_n$.

Die Matrix $A \in M_n(\mathbb{R})$ mit $A^t A = E_n$ heisst dann orthogonal, und folgende Aussagen sind äquivalent für $A \in M_n(\mathbb{R})$:

1. A ist orthogonal.
2. $A^t A = E_n$
3. $A A^t = E_n$
4. A vermittelt eine Basistransformation zwischen Orthonormalbasen.
5. Die Spalten von A bilden im \mathbb{R}^n bzgl. dem Standardskalarpunkt die Orthonormalbasis.
6. Die Zeilen von A bilden im \mathbb{R}^n bzgl. dem Skalarprodukt eine Orthonormalbasis.

- **Fourierkoeffizient, Parsevalische Gleichung:** Sei e_1, \ldots, e_n eine Orthonormalbasis von V.

Dann ist jeder Vektor $v \in V$ darstellbar als

$$v = \Sigma_{i=1}^n (v, e_i)e_i \quad (v, e_i) \text{ heisst } \text{„Fourierkoeffizient“}$$

und es gilt

$$||v||^2 = \Sigma_{i=1}^n (v, e_i)^2 \quad \text{„Parsevalische Gleichung“}$$

- **Fourier-Reihen**:

$$f(x) = a_0 + \Sigma_{n=1}^{\infty} a_n \cos(nx) + \Sigma_{n=1}^{\infty} b_n \sin(nx)$$

mit

$$a_n := \frac{1}{\pi} \int_0^{2\pi} f(x) \cos(nx)dx \quad b_n := \frac{1}{\pi} \int_0^{2\pi} f(x) \sin(nx)dx$$

$$a_0 := \frac{1}{2\pi} \int_0^{2\pi} f(x)dx \quad b_0 := 0$$

Es ist:

1. $f^2(x)$ integrierbar $\Rightarrow ||f - S_N|| \rightarrow 0$
2. $f(x)$ stetig differenzierbar $\Rightarrow S_N \rightarrow f$ (gleichm. punktweise) konvergent
3. \exists stetige Funktion: $S_N(x)$ ist divergent für eine dichte Teilmenge $x \in X \subseteq [0,2\pi]$

1.4 Orthogonale Abbildungen

- **Orthogonal**:

Eine lineare Abbildung $f : V \rightarrow V'$ heisst orthogonal, wenn sie mit den Skalarprodukten verträglich ist, d.h. $(f(v), f(w))_{V'} = (v, w)_V \quad \forall v, w \in V$.

Dabei sind V, V' Euklidische Vektorräume $(,)_{V}, (,)_{V'}$.

Für lineare Abbildungen $f : V \rightarrow V'$ ist äquivalent:

1. f ist orthogonal
2. Aus $||v|| = 1$ folgt stets $||f(v)|| = 1$
3. Für alle $v \in V$ gilt $||v|| = ||f(v)||$
4. Ist e_1, \ldots, e_n orthogonal in V, dann ist $f(e_1), \ldots, f(e_n)$ orthogonal in V'

Orthogonale Abbildungen $f : V \to V'$ sind also injektiv (im \mathbb{R}^2 sind das z.B. immer Drehungen oder Spiegelungen).

Eine lineare Abbildung $f : V \to V'$ ist genau dann orthogonal, wenn sie bzgl. Orthonormalbasen \{\(e_1, \ldots, e_n\), \(e'_1, \ldots, e'_m\)\} durch eine Matrix $A \in \mathbb{M}_{n,m}(\mathbb{R})$ beschrieben wird mit $A^t A = E_n$.

Es sei $V = V'$: Ein Endomorphismus (=lineare Abb. $f : V \to V$) ist genau dann orthogonal, wenn er bzgl. einer Orthonormalbasis durch eine orthogonale Matrix beschrieben wird (Bsp. $V = \mathbb{R}^2$, $V = \mathbb{R}^3$).

Beobachtungen:

1. $f, g : V \to V$ orthogonal $\Rightarrow f \circ g : V \to V$ orthogonal
2. Id ist orthogonal
3. Wenn $f : V \to V$ orthogonal, dann ist f invertierbar und f^{-1} orthogonal

Fazit: $G = \{f : V \to V \mid f$ orthogonal$\}$ ist eine Gruppe bzgl. der Komposition. Genauso der Automorphismus $Aut(V) = \{f : V \to V \mid f$ linear, bijektiv$\}$. G ist eine Untergruppe von $Aut(V)$.

In der Matrixversion: $O(n) = \{A \in GL_n(\mathbb{R}) \mid A^t A = E_n\}$:

1. $A, B \in O(n) \Rightarrow AB \in O(n)$
2. $E_n \in O(n)$
3. $A \in O(n) \Rightarrow A^{-1} \in O(n)$

Für $A \in O(n)$ gilt:

1. $\det A = Id$
2. ist $\lambda \in \mathbb{C}$ ein Eigenwert von A, dann ist $| \lambda | = 1$

1.5 Orthogonales Komplement

- Definition: Sei V Euklidischer Vektorraum und $U \leq V$ ein Unterraum, so ist

$$U^\perp := \{v \in V \mid (v, u) = 0\} \forall u \in U$$

das orthogonale Komplement von U. Es gilt:

- U^\perp ist Unterraum
- $U \cap U^\perp = \{0\}$
- $U \subseteq (U^\perp)^\perp$
- Wenn $\dim U < \infty$ ist, dann ist $V = U \oplus U^\perp$. Genau dann verdient U^\perp den Namen „orthogonales Komplement“.
- Wenn $\dim V < \infty$ und $U \leq V$ Unterraum $\Rightarrow \dim U + \dim U^\perp = \dim V$ und $U^\perp = U$.

- Satz von Weierstraß: f kann man gleichmässig durch Polynome approximieren: Also gibt es ein $g \in U$ mit $| f(t) - g(t) | < \frac{\varepsilon}{2\delta}$, d.h. es ex. ein Polynom, das nicht orthogonal zu f steht $\Rightarrow U^\perp = \{0\}$.

D.h. aber auch: $\dim U + \dim U^\perp \neq \dim V$, $U \oplus U^\perp \neq V$ und $U^\perp = (0)^\perp = V \neq U$.

6
- **Satz:** Sei \(V \) Euklidischer Vektorraum und \(U \leq V \) endlichdimensionaler UR. Wenn \(f : U \to V \) eine orthogonale Abbildung ist, die \(U \) invariant lässt, dann lässt \(f \) auch \(U^\perp \) invariant. (\(f \) lässt \(U \) invariant \(\iff \) \(f(U) \leq U \)).

Wenn \(f : V \to V \) orthogonal ist, dann sind die Eigenwerte \(\lambda \in \mathbb{C} \) komplex vom Betrag \(|\lambda| = 1 \). Sei \(v \) Eigenvektor zu reellen \(\lambda = \varepsilon = \pm 1 \). \(U = \mathbb{R}v \leq V \) 1-dimensionaler \(f \)-invarianter UR. \(U^\perp \) ist auch \(f \)-invariant. Wenn wir Basis \(v_2, \ldots, v_n \) von \(U^\perp \) wählen, dann wird \(f \) durch Matrix \(\begin{pmatrix} \varepsilon & 0 \\ 0 & A' \end{pmatrix} \) beschrieben. \(A' \) ist wieder orthogonal (\(f \mid_{U^\perp} : U^\perp \to U^\perp \) ist orthogonal). Iteriere: \(\dim V < \infty \)

erreicht man nach endlich vielen Schritten: \(A^{(m)} \) besitzt keine reellen Eigenwerte. \(A^{(m)} \in O(n-m) \) hat lauter paarweise konjugierte komplexe Eigenwerte \(\Rightarrow \) in \(\mathbb{R}^{n-m} \) gibt es 2-dimensionale \(A^{(m)} \)-invariante Unterräume \(U \).

Also gibt es zu jeder orthogonalen Abbildung \(f : U \to V \) (\(\dim V = n < \infty \)) eine orthonormale Basis bzgl. derer \(f \) durch die Matrix \(A = \begin{pmatrix} 1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 1 \end{pmatrix} \) mit \(B_i = \begin{pmatrix} \cos \alpha_i & -\sin \alpha_i \\ \sin \alpha_i & \cos \alpha_i \end{pmatrix} \)

\(\alpha_i \in [0, 2\pi] \), \(\alpha_i \neq 0, \neq \pi, \neq 2\pi \) beschrieben wird.

- **Kästchenform einer orthogonalen Abbildung:** \(f : \mathbb{R}^n \to \mathbb{R}^n \) sei orthogonal Abbildung und wird beschrieben durch \(A_1 \cdots A_k \) mit \(A_i = \begin{pmatrix} \cos \alpha_i & -\sin \alpha_i \\ \sin \alpha_i & \cos \alpha_i \end{pmatrix} \)

Zu jeder Matrix \(A \in O(n) \) gibt es eine Matrix \(B \in O(n) \) mit \(B^T AB = (\text{Kästchenform}) \).

- **Spezielle Matrix:** \(A \in O(n) \) heisst speziell, wenn det \(A = 1 \) gilt.

\(SO(n) := \{ A \in O(n) \mid \det A = 1 \} \) sind die sog. Drehmatrizen. \(SO(n) \) ist eine Untergruppe von \(O(n) \). \(A \in SO(3) \) beschreibt eine Drehung im \(\mathbb{R}^3 \) mit

- Drechsel: Eigenraum zum EW+1 (wenn eindeutig bestimmt)
- Drehebene: orthogonales Komplement zur Drechsel
- Drehwinkel: \(A \) ist orthogonal konjugiert zu \(\begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \alpha & -\sin \alpha \\ 0 & \sin \alpha & \cos \alpha \end{pmatrix} \), also \(\text{Spur } A = 1 + \alpha \cos \alpha \Rightarrow \cos \alpha = 1 \)

\(\text{Spur} (A) := \sum_{i=1}^n a_{ii} \) mit \(A = (a_{ij})_{i,j \leq n} \).
1.6 Unitäre Vektorräume

- **Hermite Form:**
 Eine Abbildung $\Phi : V \times V \to \mathbb{C}$ mit $v, v', w \in V, c \in \mathbb{C}$ und Eigenschaften:
 - $\Phi(v + v', w) = \Phi(v, w) + \Phi(v', w)$
 - $\Phi(c \cdot v, w) = c \cdot \Phi(v, w)$
 - $\Phi(v, w) = \overline{\Phi(w, v)}$

Es gilt:
1. $\Phi(v, -) \text{ ist additiv}$
2. $\Phi(v, c \cdot w) = \overline{c} \cdot \Phi(v, w)$ ($\Phi(-, -)$ ist also bzgl. \mathbb{R} bilinear)
3. $\Phi(v, v) = \overline{\Phi(v, v)}$ also $\Phi(v, v) \in \mathbb{R}$

- **Positiv definit:** Φ heisst positiv definit, wenn $\Phi(v, v) \geq 0$ fiir alle $v \in V$, $\cdot = 0^\top$ nur fiir $v = 0$.

- **(Hermitesches) Skalarpunkt:** Ein (Hermitesches) Skalarpunkt in einem \mathbb{C}-Vektorraum V ist eine positiv definite Hermite Form ($,) : V \times V \to \mathbb{C}$. Ein unitärer VR ist ein \mathbb{C}-VR mit einem Skalarpunkt.

 $$(f(v), w) = (v, f^*(v)) = (\overline{f^*(v)}, v)$$

- **Cauchy-Schwarzche-Ungleichung:** $| (v, w) |^2 \leq (v, v) \cdot (w, w)$, mit $\cdot = \cdot$ vi. v, w lin. abh.

Genau wie die Cauchy-Schwarzche-Ungleichung gilt, bleibt auch die Definition der Norm und der Orthogonalität gleich:

- **Norm:** $\|v\| = \|v, v\| = \sqrt{\langle v, v \rangle} \geq 0$, reel
- **Orthogonalität:** $\forall v, w \in V : v \perp w \Leftrightarrow (v, w) = 0$

Auch sind Orthogonalsysteme linear unabhängig und das Gram-Schmidtche Orthogonalisierungsverfahren ist anwendbar. Jeder (endlich-dimensionale) unitäre Vektorraum besitzt eine Orthogonalbasis. Ein Basiswechsel von e_1, \ldots, e_n nach w_1, \ldots, w_n mit $e_k = \sum_{i=1}^n \alpha_{ik} w_i$, $A = (\alpha_{ik})$, $v_j = \sum_{i=1}^n \beta_{ij} e_j$, $B = (\beta_{ij})$ und $A = B^{-1} \Rightarrow v_1, \ldots, v_j$ orthonormal $\Leftrightarrow \overline{B} = B = E_n$.

- **Unitär:** $A \in GL_n(\mathbb{C})$ heisst unitär, wenn $A^{-1} = \overline{A}$ gilt. Die Matrizen, die eine Orthonormalbasis in eine ebensolche transformieren sind genau die unitären.

Für $A \in GL_n(\mathbb{C})$ sind damit äquivalent

1. A ist unitär
2. Die Zeilen von A bilden in \mathbb{C}^n bzgl. dem Standardskalarpunkt eine Orthonormalbasis.
3. Die Spalten ebenso.

Auch lässt sich jede Matrix $A \in GL_n(\mathbb{C})$ schreiben als $A = (\text{unitäre Matrix}) \cdot (\text{obere Dreiecksmatrix})$.

A unitär $\Rightarrow | \det A | = 1$.

| \hline |
| Wenn V, W unitäre Vektorräume sind, dann ist eine lineare Abbildung $f : V \to W$ unitär, wenn $(f(v), f(v')) = (v, v')$ fiir alle $v, v' \in V$. |
| \hline |

| \hline |
| Damit sind unitäre Abb. injektiv und lineare Abb. genau dann unitär, wenn sie bzgl. einer Orthonormalbasis durch eine unitäre Matrix beschrieben werden können und die Komposition unitärer Abbildungen wieder unitär ist. |
| \hline |
- **Spezielle unitäre Gruppen**: \(U(n) = \{ A \in GL_n(\mathbb{C}) \mid A \text{ unitär} \} \) ist eine Gruppe bzgl. der Matrixmultiplikation.

\(SU(n) = \{ A \in U(n) \mid \det A = 1 \} \) ist eine spezielle unitäre Gruppe.

Auch hier haben die Eigenwerte \(\lambda \in \mathbb{C} \) einer unitären Abbildung \(f : V \times V \) alle Betrag \(|\lambda| = 1 \).

- **Orthogonales Komplement**: Sei \(U \leq V, U^\perp := \{ v \in V \mid (v, u) = 0 \quad \forall u \in U \} \), dann ist:

 - \(U \cap U^\perp = \{ 0 \} \)
 - \(U \subset (U^\perp)^\perp \)
 - \(\dim U < \infty \Rightarrow V = U \oplus U^\perp \)

Wenn \(f : V \rightarrow V \) eine unitäre Selbstabbildung ist und \(U \leq V \) ein UR mit \(F(U) \subset U \) und \(\dim V < \infty \), dann ist \(f(U^\perp) \subset U^\perp \).

Sei \(\dim V < \infty \). Dann gibt es zu jeder unitären Selbstabbildung \(f : V \rightarrow V \) eine Orthonormalbasis bestehend aus Eigenvektoren von \(f \) (f ist diagonalisierbar, genauer: unitär diagonalisierbar).

\(\rightarrow C \in M_n(\mathbb{C}) \) definiert genau dann ein Skalarprodukt, wenn \(C = A^T \overline{A} \) mit \(A \in GL_n(\mathbb{C}) \).

1.7 Adjungierte Abbildungen

\(K \) sei entweder \(\mathbb{R} \) oder \(\mathbb{C} \), \(V \) ein \(K \)-Vektorraum mit Skalarprodukt.

- **Funktional:**

 Eine lineare Abbildung \(f : v \rightarrow K \), wobei jeder Vektor \(v \in V \) ein solches \(f_v : V \rightarrow K \) mit \(f_v(w) := (w, v) \) definiert. Die Linearität bedeutet, dass \(f_v(\alpha w + \beta w') = \alpha f_v(w) + \beta f_v(w') \) gilt. Ist \(\dim V < \infty \), dann gibt es zu jedem linearen Funktional \(f : V \rightarrow K \) einen eindeutig bestimmten Vektor \(v \in V \) mit \(f = f_v, f(w) = (w, v) \quad \forall w \in V \).

- **Adjungierte Abbildung:**

 \(f^* : W \rightarrow V \) heißt die zu \(f : V \rightarrow W \) adjungierte Abbildung und es gilt:

 - \(f^* = f^* \)
 - \(\ker f^* = f(V)^\perp \)
 - \(f^*(W) = (\ker f)^\perp \)
 - \(f \) injektiv \(\Rightarrow f^* \) surjektiv
 - \(f \) surjektiv \(\Rightarrow f^* \) injektiv
 - \(f \) Isomorphismus \(\Rightarrow f^* \) Isomorphismus

 - \((f + g)^* = f^* + g^* \)
 - \((\alpha f)^* = \overline{\alpha} f^* \)
 - \((g \circ f)^* = f^* \circ g^* \)

 Sei \(A \in M_n(K) \) die Matrix, die \(f : V \rightarrow W \) bzgl. Orthonormalbasen beschreibt. Dann wird \(f^* : W \rightarrow V \) bzgl. dieser Basen durch \(B = A^T \overline{A} \) beschrieben.

 Wenn \(\chi_f(x) \) das char. Polynom von \(f : V \rightarrow V \) ist, dann ist \(\chi_{f^*}(x) = \overline{\chi_f(x)} \). Insbesondere gilt: \(\det f^* = \overline{\det f} \) und \(\text{Spur}(f^*) = \overline{\text{Spur}(f)} \) und \(f^* \) haben konjugierte Eigenwerte.

2 Lineare Selbstabbildungen eines unitären Vektorraums

Sei \(V \) ein endlich dim. Vektorraum über \(\mathbb{C} \) mit Skalarprodukt \(\text{End}(V) = \{ f : V \rightarrow V, \text{linear} \} \) (lineare Selbstabbildung), \(V = \mathbb{C}^n \) mit Skalarprodukt \((\alpha, \beta) := \alpha^T \overline{\beta} \). V beid.; sei \(v_1, \ldots, v_n \) Orthonormalbasis und die Koordinatenabbildung \(\Phi : V \rightarrow \mathbb{C}^n; v \mapsto \alpha \) mit \(v = \sum_{i=1}^n \alpha_i v_i \).
\[w = \sum \beta_i v_i, \quad (v, w) = (\sum \alpha_i v_i, \sum_j \beta_j v_j) = \sum_{i,j} \alpha_i \beta_j (v_i, v_j) = (\alpha, \beta) = (\Phi(v), \Phi(w))_{\mathbb{C}}. \]

Also ist \(\Phi : V \to \mathbb{C}^n \) ein unitärer Isomorphismus (er respektiert das Skalarprodukt):

\[
\begin{align*}
V \cong \mathbb{C}^n \cong \mathbb{R}^{2n} \\
\alpha \mapsto (Re(\alpha), Im(\alpha)) \\
\alpha = Re(\alpha) + i \cdot Im(\alpha)
\end{align*}
\]

\[
End(V) \cong M_n(\mathbb{C}) \\
\in \mathbb{R}^n
\]

2.1 Norm einer linearen Selbstabbildung

Sei \(f : V \to V \) und \(\|v\| = \sqrt{(v,v)} \), \(|\alpha_i|^2 = Re(\alpha_i)^2 + Im(\alpha_i)^2 \).

- Einheitsphäre:

\[
S = \{ v \in V \mid \|v\| = 1 \} \cong \{ \alpha \in \mathbb{C}^n \mid \sum_{i=1}^n |\alpha_i|^2 = 1 \} \cong \{ \beta \in \mathbb{R}^{2n} \mid \sum_{i=1}^n \beta_i^2 = 1 \} = S^{2n-1}
\]

Diese Menge ist kompakt.

- Einheitsball:

\[
B = \{ v \in V \mid \|v\| \leq 1 \} \cong \ldots \cong \{ \beta \in \mathbb{R}^{2n} \mid \sum_{i=1}^n \beta_i^2 \leq 1 \} = B^{2n}
\]

Diese Menge ist kompakt.

- Kompakte Mengen: Aus der Analysis wissen wir: Wenn \(F : \mathbb{R}^{2n} \to \mathbb{R} \) eine stetige Abbildung ist und \(C \subseteq \mathbb{R}^{2n} \) eine kompakte Teilmenge, dann gilt:

1. \(F(C) \) ist beschränkt, \(F(C) \subseteq [a, b] \), \(a, b \in \mathbb{R} \). Allgemeiner: stetige Abbildungen bilden kompakte Mengen auf kompakte Mengen ab.
2. \(\sup F(C) \) wird angenommen; d.h. \(\exists \alpha_0 \in C : F(\alpha_0) = \sup F(C) \) (\(= \max \{ F(C) \} \))

Wenn außerdem \(C \) zusammenhängend (Wegzsh.) ist, dann auch \(F(C) \), d.h. \(F(C) = [a, b] \).

- Norm: \(\|f\| := \sup_{\|v\|=1} \|f(v)\| \) ist eine reelle Zahl \(\geq 0 \) und es gibt ein \(v_0 \in S \) mit \(\|f\| = \|f(v_0)\| \).

\[
v \in V, \ v \neq 0 \Rightarrow \frac{\|f(v)\|}{\|v\|} \in S.\]

Ausserdem \(\frac{\|f(v)\|}{\|v\|} = 1 \) für \(\|v\| = 1 \) also \(\|f(v)\| \leq \|f\| \cdot \|v\| \), \(\forall v \in V \) und auch \(\|f\| = \sup_{v \neq 0} \frac{\|f(v)\|}{\|v\|} \).

Die Norm besitzt folgende Eigenschaften (\(\forall f, g : V \to V, \alpha \in \mathbb{C} \)):

- \(\|f\| = 0 \iff f = 0 \)
- \(\|f + g\| \leq \|f\| + \|g\| \)
- \(\|\alpha f\| = \|f\| \)
- \(\|f \circ g\| \leq \|f\| \cdot \|g\| \)
- \(\|f\| = \max_{\|v\|=1} \|f(v)\| \)

Für alle \(f : V \to V \) gilt \(\|f^*\| = \|f\| \) und \(\|f^* f\| = \|f\|^2 \).

2.2 Wertevorrat

- Wertevorrat: Sei \(f : V \to V \), dann ist der Wertevorrat von \(f \)

\[
W(f) = \{(f(v), v) \mid \|v\| = 1\} \subseteq \mathbb{C}
\]

mit den folgenden Eigenschaften:
1. $W(f)$ ist kompakt
2. Wenn $u : V \to V$ unitär ist, dann ist $W(u^*fu) = W(f)$
3. Ist $\alpha, \beta \in \mathbb{C}$, dann ist $W(\alpha f + \beta \cdot \text{Id}) = \alpha \cdot W(f) + \beta$

$\dim V = 2$, $f : V \to V$ linear $\Rightarrow W(f)$ = Ellipse mit Eigenwerten λ_1, λ_2 von f in den Brennpunkten.

- **Konvexität:** Sei V ein \mathbb{R}-Vektorraum. Eine Teilmenge $M \subseteq V$ heisst konvex, wenn mit $v, w \in M$ auch die Verbindungslinie $\{tv + (1-t)w \mid 0 \leq t \leq 1\}$ in M ist.

- **Satz von Hausdorff:** $W(f)$ ist konvex $\Rightarrow W(f)$ enthält immer die EW von f.

- **Sätze:** Die Ecken auf dem Rand von $W(f)$ sind Eigenwerte.

Wenn λ ein Eigenwert auf dem Rand von $W(f)$ ist, dann ist das orthogonalen Komplement des Eigenraums $E_\lambda(f) \subseteq V$, also $E_\lambda(f) \perp f$-invariant. Also ist $V = E_\lambda(f) \oplus E_\lambda(f) \perp f$-invariant.

2.3 Selbstadjungierte lineare Abbildungen $f : V \to V$

- **Selbstadjungierte Abbildungen:**

| $f : V \to V$ heisst selbstadjungiert, wenn $f^* = f$ und $f^*: V \to V$ mit $(f(v),w) = (v,f^*(w)) \quad \forall v, w \in V$ gilt. |

Wird f bzgl. einer Orthonormalbasis durch die Matrix $A \in M_n(\mathbb{C})$ beschrieben, dann wird f^* bzgl. eben dieser Basis durch A^t beschrieben. Selbstadjungierte Abbildungen $f : V \to V$ werden also bzgl. Orthonormalbasen durch Matrix A mit $A = A^t$ beschrieben (Hermite matrices).

$v \neq 0$ $\Rightarrow f(v) = \lambda v$ $(f(v),w) = (f(v),v)$, also $(f(v),v) \in \mathbb{R}$, also $W(f) \subseteq \mathbb{R}$ \Rightarrow Eigenwerte reell. Ist $f : V \to V$ selbstadj., dann

\Rightarrow Eigenwerte von f sind reell
$\Rightarrow \|f\| = \sup_{\|v\| \leq 1} |(f(v),v)|$
$\Rightarrow \|f\|$ oder $-\|f\|$ sind Eigenwerte
$\Rightarrow U \subseteq V$ ist f-invariant, dann auch U^\perp

- **Hauptsatz:** Zu jeder selbstadjungierten Abbildung $f : V \to V$ gibt es eine Orthonormalbasis bestehend aus Eigenvektoren $\in \mathbb{R}$.

- **Hermite Matrizen:** Jede Hermite Matrix ist diagonalisierbar, d.h. $A \in M_n(\mathbb{C})$ mit $A^t = A$, dann gibt es eine Menge $U \in U(n)$ ($U^t = U^{-1}$) mit $U^{-1}AU = \begin{pmatrix} \cdots & 0 \\ 0 & \cdots \end{pmatrix}$ reell.

Eine lineare Selbstabbildung $f : V \to V$ ist genau dann selbstadjungiert, wenn $W(f) \subseteq \mathbb{R}$.

Ist f selbstadjungiert und $\lambda_1 \geq \lambda_2 \geq \ldots \geq \lambda_n$ die (reellen) Eigenwerte von f, dann ist $W(f)[\lambda_1, \lambda_2] \subseteq \mathbb{R}$.

- **Minimax-Prinzip von Courant:** Sei f selbstadjungiert, $\lambda_1 \geq \lambda_2 \geq \ldots \geq \lambda_n$ alle Eigenwerte mit ihren Vielfachheiten aufgeführt.

v_1, \ldots, v_n sei die Orthonormalbasis mit $f(v_i) = \lambda_i v_i$.

Für jeden Unterraum $U \subseteq V$ mit $\dim U = n - k + 1$ gilt $\lambda_k \leq \max \{(f(u),u) \mid u \in U\} =: W(f \big| U)$ und $W(f) = \{\Sigma_{i=1}^n \lambda_i v_i \mid \Sigma_{i=1}^n = 1\}$ und $\lambda_k = \min_{U \subseteq V} \max_{f \mid U}$, $\dim U = n - k + 1$.

Eine Anwendung ist:

Sei $A \in M_n(\mathbb{C})$ und Hermite Eigenwerte $\lambda_1 \leq \ldots \leq \lambda_n$.

11
\[A = \begin{pmatrix} A' & * \\ \vdots & \ddots \\ * & \cdots & * \end{pmatrix} \] und \(A' \in \mathbb{M}_{n-1}(\mathbb{C}) \) Eigenwerte \(\lambda_1 \geq \lambda_2 \geq \ldots \geq \lambda'_n \).

Dann gilt \(\lambda_1 \geq \lambda'_1 \geq \lambda_2 \geq \lambda'_2 \geq \ldots \geq \lambda'_{n-1} \geq \lambda_n \).

2.4 Normale Abbildungen

\(f : V \to V \), \(V \) ist ein \(\mathbb{C} \)-Vektorraum, \(\dim V = n < \infty \) mit Skalarprodukt.

- Normale Abbildungen:

Eine lineare Abbildung \(f : V \to V \) heisst normal, wenn \(ff^* = f^*f \) gilt.

Beispiele:

- \(f \) selbstadjungiert, \(f^* = f \)
- \(f \) unitär, \(f^* = f^{-1} \)
- \(f : V \to V \) mit \(V \) hat orthonormale Basis aus Eigenvektoren

\(f = g_1 + ig_2 \) (\(g_1 \) selbstadj.) ist genau dann normal, wenn \(g_1 \) und \(g_2 \) kommutieren.

Zwei selbstadj. Abbildungen \(g_1 : V \to V \) kommutieren genau dann, wenn es für sie simultan eine Basis aus Eigenvektoren gibt.

- Konvex-Linearkombination: Sei \(V \) ein \(\mathbb{R} \)-Vektorraum und \(v_1, \ldots, v_k \in V \). Eine **Konvex-Linearkombination** von \(v_1, \ldots, v_n \) ist ein Ausdruck

\[\sum_i = 1^k t_i v_i \text{ mit } t_i \in \mathbb{R}, \ t_i \geq 0, \ \sum_{i=1}^k z_i = 1. \]

Die Menge aller Konvex-Linearkombinationen von \(v_1, \ldots, v_k \) beschreibt eine konvexe Teilmenge von \(V \). Dies ist die kleinste konvexe Menge, die \(v_1, \ldots, v_k \) enthält (=**konvexe Hülle**).

Wenn also \(f : V \to V \) eine normale Abbildung ist, dann ist \(W(f) = \text{die konvexe Hülle der Eigenwerte von } f^\mathsf{n} = \{\text{Konvex-Linearkomb. der EW von } f\} \), und \(W(f) = \text{Polyeder mit } n \text{ Ecken.} \)

2.5 Positive selbstadjungierte Abbildungen

Seien \(f, g : V \to V \) selbstadjungiert.

- Positiv Selbstadjungierte Abbildungen:

\[\begin{align*} f \geq g, \text{ wenn } (f(v), v) & \geq (g(v), v) \forall v \in V \\ f > g, \text{ wenn } (f(v), v) & > (g(v), v) \forall v \in V, v \neq 0 \end{align*} \]

Also:

- \(f \geq 0, \text{ wenn } (f(v), v) \geq 0 \forall v \in V \)
- \(f > 0, \text{ wenn } (f(v), v) > 0 \forall v \in V, v \neq 0 \)

Für Orthonormalbasis \(v_1, \ldots, v_n \in V \) mit \(f(v_i) = \lambda_i v_i \), \(\lambda_i \) Eigenwert gilt:

\[f > 0 \iff \lambda_i > 0 \]

\[f \geq 0 \iff \lambda_i \geq 0 \]

Die folgenden Aussagen sind äquivalent für eine selbstadj. Abbildung \(f : V \to V \), die bzgl. einer Orthonormalbasis durch die Matrix \(A \in \mathbb{M}_{n}(\mathbb{C}) \) beschrieben wird \((A^T = A) \):

- \(f > 0 \)
Für alle \(1 \leq i_1 \leq \ldots \leq i_k \leq n\) entsteht aus \(A\) durch Weglassen der \(i_1\)-ten, \ldots, \(i_k\)-ten Zeilen und Spalten eine Matrix mit positiver Determinante.

Für alle \(k = 1, \ldots, n\) ist det
\[
\begin{pmatrix}
\alpha_{11} & \cdots & \alpha_{1n} \\
\vdots & & \vdots \\
\alpha_{n1} & \cdots & \alpha_{nn}
\end{pmatrix}
\] > 0.

- **Satz:** Sei \(f : V \to V\) selbstadj. mit \(f \geq 0\). Sei \(m \in \mathbb{N}\).

1. Dann gibt es eine selbstadj. Abb. \(g : V \to V\) mit \(g^m = f\) und \(g \geq 0\)
2. \(g\) ist eindeutig bestimmt
3. Wenn \(h : V \to V\) lineare Abb. ist mit \(hf = fh\), dann gilt auch \(hg = gh\) (\(C(f) = \{h : V \to V \mid hf = fh\}\) "Zentralisator": \(C(f) = C(g)\))

Sei \(V\) ein unendlichdimensionaler Vektorraum über bel. Körper \(K\); \(\varphi : V \to V\) eine diagonalisierbare und \(\psi : V \to V\) eine bel. lin. Abb. Dann gilt:

\[
\varphi \psi = \psi \varphi \quad \Leftrightarrow \quad \text{Die Eigenräume von } \varphi \text{ sind } \psi\text{-invariant.}
\]

- **Polarzerlegung:** Jede lineare Abbildung lässt sich schreiben als \(f = u \circ s\) mit \(u\) unitär und \(s\) selbstadj. und \(s \geq 0\).

\(s\) ist eindeutig bestimmt mit \(s = \sqrt{f f}\). Wenn \(f\) invertierbar ist, dann ist \(s > 0\) (invertierbar) also auch \(u = fs^{-1}\) eindeutig.

\(f\) normal \(\iff\ us = su\).

Sei \(f, g : V \to V\) linear mit \(|f(v)| = |g(v)| \forall v \in V\). Dann gibt es eine unitäre Abbildung \(u : V \to V\) mit \(f = ug\).

2.6 Etwas konvexe Geometrie und Anwendungen auf \(W(f)\)

- **Konvex:** Definition

1. \(M \subseteq \mathbb{R}^n\) heisst konvex, wenn mit \(x, y \in M\) auch die Verbindungslinie \([x, y] := \{(1-t)x + ty \mid t \in [0, 1]\} \subseteq M\) ist.
2. Eine Konvexlinearkombination von \(x_1, \ldots, x_k \in \mathbb{R}^n\) ist jeder Ausdruck \(\Sigma t_i x_i\) mit \(t_i \geq 0, \Sigma t_i = 1\).
3. Ist \(M \subseteq \mathbb{R}^n\) bel. und \(\text{konv}(M) := \{\Sigma_{i=1}^k t_i x_i \mid t_i \geq 0, \Sigma t_i = 1 \forall x_i \in M\}\)=konvexe Hülle von \(M\) in \(\mathbb{R}^n\).

Es ist \(\text{konv}(M)\) die kleinste konvexe Menge, die \(M\) enthält.

- **Halbraum:** \(H \subseteq \mathbb{R}^n\) heisst (abg.) Halbraum, wenn es ein lineares Funktional \(f : \mathbb{R}^n \to \mathbb{R}\) und ein \(\beta \in \mathbb{R}\) mit \(H = \{x \in \mathbb{R}^n \mid f(x) + \beta \geq 0\}\).

- **Satz von Hansdorff:** Sei \(V\) unitärer VR mit dim \(V = n < \infty, f : V \to V\). Dann ist \(W(f) = \{(f(v), v) \mid \|v\| = 1\}\) konvex.

- **Satz:** Jede Ecke \(W(f)\) ist ein Eigenwert von \(f\).

- **Trennungssatz:** Es sei \(K \subseteq \mathbb{R}^n\) abgeschlossen und konvex. Sei \(x \in \mathbb{R}^n, x \neq K\). Dann gibt es einen Halbraum \(H \subseteq \mathbb{R}^n\) mit \(K \subseteq H, x \not\in H\) (d.h. \(\text{Rd}H\) trennt \(K\) von \(x\)).

- **Corollar:** Jede abgeschlossene konvexe Menge ist Durchschnitt von Halbräumen.
- Stützhyperebenen: Der Rand einer abgeschlossenen konvexen Menge \(K \subseteq \mathbb{R}^n \) ist \(\text{Rd}K = \{ x \in k \mid x \text{ ist Häufungspunkt des Komplements } \mathbb{R}^n - K \} \).
Sei \(K \) konvex und abgeschlossen und \(x_0 \in \text{Rd}K \). Eine Stützhyperebene in \(x_0 \) von \(K \) ist eine Hyperebene \(L \) mit \(x_0 \in L, L = \text{Rd}H \) eines Halbraumes \(H \) mit \(K \subseteq H \).
Eine abgeschlossene konvexe Menge besitzt in jedem Randpunkt eine Stützhyperebene.
Wenn \(\lambda \) Eigenwert von \(f \) und \(\lambda \in \text{Rd}W(f) \), dann ist \(E_\lambda(f) = E_\lambda(f^*) \). (Wenn \(E_\lambda(f) = E_\lambda(f^*) \), dann ist \(E_\lambda(f) \) f-invariant)

3 Quadratische Formen

3.1 Bilinearformen und Quadratische Formen
Es sei \(\Phi : V \times V \rightarrow K \) eine Bilinearform, wobei \(V \) ein VR über Körper \(K \) ist und \(\dim V = n < \infty \).
Dann ist \(Q(v) := \Phi(v,v) \) die zu \(\Phi \) gehörige quadratische Form.
Wenn in \(K \neq 0 \) gilt, dann gibt es zu jeder quadratischen Form \(Q : V \rightarrow K \) genau eine symmetrische Bilinearform \(\Psi : V \times V \rightarrow K \) mit \(Q(v) = \Psi(v,v) \).
Man kann \(Q \) aus \(\Phi \) zurückgewinnen, wenn \(\Phi \) eine symmetrische Bilinearform ist. Dann ist nämlich
\[
\Phi(v,w) = \frac{1}{2}(Q(v+w) - Q(v) - Q(w)), \quad \text{falls } 1 + 1 \neq 0 \text{ in } K
\]

3.2 Klassifikation der symmetrischen Bilinearformen
- Primkörper: \(K \) beliebiger Körper. \(K_0 = \{ m \cdot 1 \mid m \in \mathbb{Z} \} \), also \(m \cdot 1 := 1 + 1 + \ldots + 1 \).
Sei \(p \in \mathbb{N} \) die kleinste natürliche Zahl mit \(p \cdot 1 = 0 \) und
\[
m \cdot 1 = (u \cdot p + r) \cdot 1 = up \cdot 1 + r \cdot 1 = r \cdot 1 \quad \forall u \in \mathbb{Z}, 0 \leq r < p
\]
d.h. \(K_0 = \{ 0,1,1+1,\ldots,(p-1) \cdot 1 \} \mid K_0 \mid = p \).
- Charakteristik: Es ist \(p = \text{Charakteristik von } K \). Wenn \(m \cdot 1 \neq 0 \) für alle \(m \in \mathbb{N} \), dann nennt man \(0 = \text{Char } K \).
\(\text{Char } \mathbb{Q} = \text{Char } \mathbb{R} = \text{Char } \mathbb{C} = \ldots = 0 \).
\(\text{Char } \mathbb{F}_p = p \), wobei \(\mathbb{F}_p \) der Körper mit \(p \) Elementen bestehend aus allen Restklassen von ganzen Zahlen \(\mod p \).
\[
\begin{align*}
\mathbb{F}_p & = \{ [0],[1],\ldots,[p-1] \} \\
\mathbb{F}_p & \rightarrow K \\
[k] & := k + p\mathbb{Z} \\
[k] & \mapsto k \cdot 1 \text{ liefert einen Isomorphismus:} \\
\mathbb{F}_p & \mapsto K_0 \\
(k) & \mapsto k \cdot 1 \text{ (Bijektion, verträglich mit + und \cdot)}
\end{align*}
\]
\(K_0 \) ist Unterkörper von \(K \):
\[
(m \cdot 1) \pm (n \cdot 1) = (m \pm n) \cdot 1
\]
\[
(m \cdot 1) \cdot (n \cdot 1) = (m \cdot n) \cdot 1
\]
Zu einer symmetrischen Bilinearform \(\Phi : V \times V \rightarrow K \) gibt es immer eine Basis \(v_1,\ldots,v_n \) von \(V \) mit \(\Phi(v_i,v_j) = 0 \) für \(i \neq j \).
Auch: Ist ein Körper mit \(\text{Char } K \neq 2 \), dann gibt es zu jeder quadratischen Form \(Q : V \rightarrow K \) eine Basis \(v_1,\ldots,v_n \), so dass \(Q \) beschrieben wird als
\[
v = \sum_{i=1}^{n} \alpha_i v_i \\
Q(v) = \sum_{i=1}^{n} d_i \alpha_i^2
\]
wobei \(d_i := Q(v_i) \).
- **Eigenschaften:** 1. Über \mathbb{C} gibt es zu jeder quadratischen Form $Q : V \rightarrow \mathbb{C}$ eine Basis v_1, \ldots, v_n mit $v = \Sigma \alpha_i v_i \rightarrow Q(v) = \Sigma_{i=1}^n \alpha_i^2 \ (0 \leq r \leq n)$.
2. $K = \mathbb{R}$ In \mathbb{R} sind alle $r > 0$ Quadrate und alle $r < 0$ Nichtquadrate. Und jedes Nichtquadrat $a \in \mathbb{R}$ ist $a = (-1) \cdot b$
 $$\Phi(v_i, v_j) = \underbrace{\alpha_1, \alpha_2, \ldots, \alpha_r, \alpha_{r+1}, \ldots, \alpha_{r+g}, 0, \ldots, 0}_{>0} \underbrace{0, \ldots, 0}_{<0}$$
 mit geeigneten Quadraten multipliziert.
 $$\begin{pmatrix} 1, \ldots, 1, -1, \ldots, -1, 0, \ldots, 0 \end{pmatrix}$$
 Über $K = \mathbb{R}$ gibt es also eine Basis v_1, \ldots, v_n in V, so dass $V = \Sigma_{i=1}^n \alpha_i v_i$ und $Q(v) = \Sigma_{i=1}^n \alpha_i^2 - \Sigma_{i=r+1}^n \alpha_i^2$.
3. $K = \mathbb{Q}$ Jede rationale Zahl $a > 0$ hat eine eindeutige „Primfaktorzerlegung“ $a = p_1 \cdot \ldots \cdot p_k$ mit m_1 mal p_1 ... m_k-mal p_k wobei die p_i paarweise verschiedene Primzahlen sind und $m_i \in \mathbb{Z}$.
a ist genau dann ein Quadrat, wenn alle m_i gerade sind. Jedes $a > 0$ hat also eine Zerlegung:
 $$a = b^2 \cdot q_1 \ldots q_l,$$
 wobei die q_i diejenigen p_i in der Primfaktorenzerlegung sind, die ungerade m_i haben.
 Sei also $S = \{p_i \cdot p_j \ldots p_k \mid p_i \neq p_j \text{ prim, } i \neq j\}$ „quadratfreie Zahlen“ mit $1 \in S$ und $k \geq 0$.
 Dann ist jedes $a \in \mathbb{Q}$ auf eindeutige Weise darstellbar als $a = \pm b^2 \cdot s$ mit $s \in S$.
4. Sei K ein endlicher Körper, $K_0 \leq K$ und $K_0 = \{m \cdot 1 \mid m \in \mathbb{Z}\}$ mit $| K_0 | = p$ „Primfaktor“.
 K kann man als Vektorraum über K_0 auffassen. $| K | < \infty \Rightarrow \dim_{K_0} K = n < \infty$.
 $K \cong_{VR} K_0^n$ also $| K | = p^n$.
 Sei $\varphi : K \rightarrow K$, $\varphi(a) = a^2$.
 Ist φ injektiv? $\varphi(a) = \varphi(b)$, d.h. $a^2 = b^2$:
 $$a = \pm b \iff \begin{cases} a^2 - b^2 = 0 \\ (a - b)(a + b) = 0 \end{cases}$$
 Wenn $\text{char} K = 2$, dann ist φ injektiv, surjektiv und jedes Element ein Quadrat.
 Es gilt $\text{char} K = p > 2$ und $a \neq -a$ für alle $a \neq 0$. φ wirft je 2 Elemente auf ein und dasselbe \Rightarrow in K gibt es genau $\frac{p-1}{2}$ Quadrate $\neq 0$ und $\frac{p-1}{2}$ Nichtquadrate $\neq 0$.
 Sei $\varepsilon \in K$ Nichtquadrat $\Rightarrow a^2 \cdot \varepsilon$ auch Nichtquadrat $(a^2 \varepsilon = b^2 \Rightarrow \varepsilon = (a^{-1}b)^2)$.

- **Corollar:** In jeder Äquivalenzklassen von $M_n(\mathbb{C})$ gibt es eine Matrix der Form
 $$\begin{pmatrix} E_r & 0 \\ 0 & 0 \end{pmatrix}.$$
 Zwei solche Matrizen sind inäquivalent, denn bei der Transformation $A \mapsto T^\top AT$ bleibt der Rang unverändert (wenn T regulär, dann $\text{Rang} A = \text{Rang} AT$ etc.). $\text{Rang} \begin{pmatrix} E_r & 0 \\ 0 & 0 \end{pmatrix} = r$.

- **Satz:** Der Rang der Gramschen Matrix von Φ ist unabhängig von der Basiswahl, und über \mathbb{C} gibt es zu jedem $r = 0, 1, \ldots, n$ genau eine symmetrische Biliniearmform vom Rang r- bis auf Äquivalenz.
 Jede Matrix $A \in M_n(\mathbb{R})$ ist also äquivalent zu einer Matrix der Form
 $$\begin{pmatrix} E_r & 0 \\ 0 & -E_{r-1} \end{pmatrix}.$$

- **Trägheitsatz von Sylvester:** Der Trägheitsindex t ist durch Φ eindeutig bestimmt (unabh. von der Basis v_1, \ldots, v_n), wobei r der RangΦ ist.
Wir wissen, dass jede symmetrische Matrix $A \in \mathbb{M}_n(\mathbb{R})$ ist orthogonal diagonalisierbar, d.h.
\[
\exists \ - O(n) \text{ mit } U^{-1}AU = \begin{pmatrix}
\lambda_1 & 0 \\
0 & \ddots \\
0 & 0 & \lambda_n
\end{pmatrix}, \lambda_i \in \mathbb{R}, U^{-1} = U(t) \text{ mit Trägheitsindex=Anzahl } i
\]
mit $\lambda_i > 0$.

- **Corollar:** Wenn $B = T^\top AT$ mit $T \in GL_n(\mathbb{R})$, dann haben A und B gleichviel pos. Eigenwerte (mit Vielfachheit zu zählen).

- **Definitheiten:** $\Phi : V \times V \to \mathbb{R}$ heisst:
 - Positiv definit: $r(\Phi) = n$, $t(\Phi) = n$
 - Negativ definit: $r(\Phi) = n$, $t(\Phi) = 0$
 - Positiv semidefinit: $r(\Phi) < n$, $t(\Phi) = r(\Phi)$
 - Negativ semidefinit: $r(\Phi) < n$, $t(\Phi) = 0$
 - Indefinit: $t(\Phi) \neq 0$, $t(\Phi) \neq r(\Phi)$

3.3 Bilinearformen in einem Euklidischen Vektorraum

Es sei $K = \mathbb{R}$ und V ein VR über \mathbb{R} versehen mit Skalarprodukt $\dim V = n < \infty$.
Sei $\Phi : V \times V \to \mathbb{R}$ bilinear und sei $v \in V$ gegeben mit $f = \Phi(-, v) : V \to \mathbb{R}$ linear („lineares Funktional“). Zu jedem linearen Funktional $f : V \to \mathbb{R}$ gibt es einen eindeutig bestimmtes $v' \in V$ mit $f = (-, v')$ und $V \to \mathbb{R}$. Zu $v \in V$ gibt es also ein eindeutig bestimmtes $v' \in V$ mit $\Phi(-, v') : V \to \mathbb{R}$.

Damit wird die Abbildung $g : V \to V, g(v) = v'$ definiert, so dass gilt
\[
\Phi(w, v) = (w, g(v)) \quad \forall v, w \in V
\]
Es gilt:

1. $g : V \to V$ ist linear
2. g ist selbstadjungiert $\iff \Phi$ ist symmetrisch

- **Hauptachsentransformation:** In einem Euklidischen Vektorraum V, $\dim V = n < \infty$ gibt es zu jeder symmetrischen Bilinearform $\Phi : V \times V \to \mathbb{R}$ eine orthonormale Basis e_1, \ldots, e_n mit $\Phi(e_i, e_j) = \delta_{ij}\lambda_j$ mit $\lambda_j \in \mathbb{R}$ (EW von g)

- **Corollar:** In einem reellen Vektorraum kann man zu zwei quadratischen Formen $Q_1 : V \to \mathbb{R}$, $Q_2 : V \to \mathbb{R}$, von denen Q_1 positiv definit ist, eine Basis finden, so dass Q_1 und Q_2 „simultandiagonal“ sind, d.h. $Q_1(v) = \sum \alpha_i^2$, $Q_2(v) = \sum \lambda_i\alpha_i^2$, $v = \sum \alpha_i v_i$.

3.4 Flächen zweiter Ordnung im affinen Raum

Ein affiner Raum A ist eine Menge A zusammen mit einem K-Vektorraum V und einer Abbildung $A \times A \overrightarrow{V} : (P, Q) \mapsto \overrightarrow{PQ} \in V$, so dass gilt

1. $\overrightarrow{PQ} + \overrightarrow{QR} = \overrightarrow{PR}$ für alle P, Q, R
2. Für jedes feste $P \in A$ ist $A \to V : Q \mapsto \overrightarrow{PQ}$ eine Bijektion.

- **Koordinatensystem:** Ein Koordinatensystem ist definiert durch
• Wahl eines Basispunktes $0 \in \mathbb{A}$
• Wahl einer Basis v_1, \ldots, v_n von V

- Fläche 2. Ordnung: $F \subseteq \mathbb{A}$ heisst Fläche 2. Ordnung, wenn F gegeben ist durch eine symmetrische Matrix $A \in \mathbb{M}_n(K), b \in \mathbb{K}^n$ und ein $c \in \mathbb{K}$, so dass die Koordinaten der Punkte in $F \subseteq \mathbb{R}^2$ erfüllen.

Diese Definition hängt nicht ab von einem speziellen Koordinatensystem.

4 Etwas multilineare Algebra

4.1 Induzierte Abbildungen

Es seien v, w K-Vektorräume. $\text{Hom}(W, W) = \{ f : V \to W \mid f \text{ linear} \}$. $f, g \in \text{Hom}(V, W)$ ist ein K-Vektorraum.

$$(f + g)(v) := f(v) + g(v), \quad (\alpha \cdot f)(v) := \alpha f(v)$$

ist $\varphi : W \to W'$, dann induziert φ eine Abb. $\varphi_* : \text{Hom}(V, W) \to \text{Hom}(V, W')$, so dass $\varphi_*(f) = \varphi \circ f$ und damit $V f W W'$, wobei $V \varphi_*(f) W'$. Nach Basiswahl $\varphi : \Phi \in \mathbb{M}_{m,n}(K), f \sim A(V, W)$ mit $\varphi_* : A \sim \Phi A$. Es herrscht Linearität: $\Phi(\alpha A + \beta B) = \alpha \Phi A + \beta \Phi B$.

Analog induziert $\varphi : V' \to V$ eine lineare Abbildung und $\varphi^* : \text{Hom}(V, W) \to \text{Hom}(V', W)$ mit $\varphi^*(f) = f \circ \varphi$.

4.2 Der Dualraum

Spezialfall $W = K, V^* = \text{Hom}(V, K)$. Eine lineare Abbildung $f : V \to K$ heisst auch „Linearform“ oder „Lineares Funktional“. V^* ist der zu V duale Vektorraum.

Jede lineare Abbildung $\varphi : V \to W$ induziert eine lineare Abbildung $\varphi^* : W^* \to V^*$.

- Evaluationsabbildung: $\Phi : V^* \times V \to K$ mit $\phi(f, v) := f(v)$ und $v \in V, f \in V^*$. Φ ist bilinear.

Jede bilineare Abbildung $\varphi : W \times V \to K$ (Bilinearform) liefert 2 lineare Abbildungen $\Psi_1 : W \to V^*$, $\Psi_1(w) := \Psi(w, -) : V \to K$, $\Psi_2 : V \to W^*$, $\Psi_2(v) := \Psi(-, v) : W \to K$.

- Nicht ausgearbeitet: Ψ heisst nicht ausgearbeitet, wenn Ψ_1, Ψ_2 injektiv sind.

Wenn $\dim V, \dim W$ endlich sind, dann folgt aus „nicht ausgearbeitet“, dass Ψ_1, Ψ_2 Isomorphismen sind. Wenn $\dim V$ endlich ist, dann ist $\dim V^* = \dim V$.

- Duale Basis: f_1, \ldots, f_n heisst die zu v_1, \ldots, v_n duale Basis.

- Satz: Die Evaluationsabbildung $\Phi : V^* \times V \to K$ ist eine nicht ausgearbeitete Bilinearform.

Ist $\dim V, \dim W$ endlich und $\Psi : W \times V \to K$ eine beliebige nicht ausgearbeitete Bilinearform, dann ist $\Psi_1 : W \to V^*$ ein Isomorphismus.

Wenn $\dim V < \infty$ ist, dann ist $\Phi_2 : V \to V^{**}$ ein Isomorphismus ($\Phi_1 = \text{Id}_{V^*}$), (Φ_2 ist kanonischer Isomorphismus - im Gegensatz zu $V \cong V^*$).
4.3 Dualität

Sei V ein Vektorraum über K. $V^* = \text{Hom}(V,K)$. $\varphi : V \rightarrow V'$ induziert eine lineare Abbildung $\varphi^* : (V')^* \rightarrow V^*$. Es ist $U \subseteq V \Rightarrow U^\perp = \{ f \in V^* \mid f(U) = 0 \}$. Diese Abbildung besitzt die folgenden Eigenschaften:

1. U^\perp ist Unterraum von V^*
2. $U_1 \subseteq U_2 \Rightarrow U_1^\perp \supseteq U_2^\perp$
3. $(U_1 + U_2)^\perp = U_1^\perp \cap U_2^\perp$
4. $(U_1 + U_2)^\perp \subseteq (U_1 \cap U_2)^\perp$

Ist $\dim V < \infty$, dann sogar $U_1^\perp + U_2^\perp = (U_1 \cap U_2)^\perp$.
Ist $\dim V < \infty$, dann gilt für alle Unterräume $U \subseteq V$:

$$\dim U + \dim U^\perp = \dim V$$

Für $W \subseteq V^*$ setze $W^T = \{ v \in V \mid f(v) = 0 \quad \forall f \in W \}$ (anti-orthogonal) mit $\Phi : V^* \times V \rightarrow K : \Phi(f,v) = f(v)$:

1. W^T ist Unterraum von V
2. $W_1 \subseteq W_2 \Rightarrow W_1^T \supseteq W_2^T$
3. $(W_1 + W_2)^T = W_1^T \cap W_2^T$, so dass gilt
 $$v \in (W_1 + W_2)^T \leftrightarrow f(v) = 0 \quad \forall f \in W_1 + W_2 \leftrightarrow f_1(v) = 0, f_2(v) = 0 \quad \forall f_1 \in W_1, f_2 \in W_2$$
4. $W_1^T + W_2^T \subseteq (W_1 \cap W_2)^T$

Ist $\dim V < \infty$, dann gilt sogar: $W_1^T + W_2^T = (W_1 \cap W_2)^T$.
Ist $\dim V < \infty$, dann gilt für alle $U \subseteq V$ und alle $W \subseteq V^*$, dass $(U^\perp)^T = U$ und $(W^T)^\perp = W$.
$\varphi : V \rightarrow V$ linear $\Rightarrow \varphi^* : V'^* \rightarrow V^*$ mit

- φ injektiv $\Rightarrow \varphi^*$ surjektiv
- φ surjektiv $\Rightarrow \varphi^*$ injektiv

$(U^\perp)^T = U$ gilt auch für $\dim V = \infty$

4.4 Tensorprodukt

Sei $\beta : V \times W \rightarrow X$ eine bilineare Abbildung, $V, W, X K$-VR.
Ist $\varphi : X \rightarrow Y$ eine lineare Abbildung, dann ist $\varphi \circ \beta : V \times W \rightarrow X \rightarrow Y$ wieder bilinear.
Problem: Gibt es universelle bilineare Abb. $V \times W \rightarrow T \rightarrow X$?

- **Tensorprodukt**: Das Tensorprodukt der Vektorräume V, W ist ein Vektorraum T zusammen mit einer bilinearen Abbildung $\tau : V \times W \rightarrow T$, so dass gilt:
 Zu jeder bilinearen Abb. $\beta : V \times W \rightarrow X$ gibt es genau eine lineare Abb. $\varphi : T \rightarrow X$ mit $\beta = \varphi \circ \tau$.
 Das Tensorprodukt (T, τ) existiert und ist bis auf natürliche Äquivalenz eindeutig.
4.5 Äußere Potenzen

Sei $V \otimes V = \text{"Tensorquadrat"}$ mit $\tau : V \times V \to V \otimes V$ und $U = \text{span}(v \otimes v \mid v \in V)$, wobei $V \wedge V := V \oplus V/U$. Beobachtungen:

1. $\alpha : V \times V \otimes V \otimes V \wedge V \wedge V$ mit π-kan. Projektion.
\[\alpha : V \times B \to V \wedge V \wedge V \quad \alpha = \pi \pi \text{ bilinear!} \]

2. $v, w \in V \quad \alpha(v, w) = v \wedge W$
\[v \wedge W \text{ ist der von } v \otimes w \text{ repräsentierte affine UR von } V \otimes V \text{ zu } U \text{ und es gilt:} \]
\[\bullet (v + v') \wedge w = v \wedge w + v' \wedge w \]
\[\bullet v \wedge (w + w') = v \wedge w + v \wedge w' \]
\[\bullet k \cdot v \wedge w = k(v \wedge w) = v \wedge kw \quad \forall k \in K \]

- Alternierend: Sei $\beta : V \times V \to W$ bilinear. β heisst alternierend, wenn $\beta(v,v) = 0 \quad \forall v \in V$. Also gibt es zu jeder alterniernden bilinearen Abb. $\beta : V \times V \to W$ genau eine lineare Abb. $\Psi : V \wedge V \to W$ mit $\Psi \alpha = \beta$.

- p-te Äußere Potenz: $\wedge^p V := \otimes^p V/U$ mit
\[U := \text{span}\{v_1 \otimes v_2 \otimes \ldots \otimes v_p \mid v_i \in V, \exists \text{ Paar } i \neq j \text{ mit } v_i = v_j\} \]
und $v_1 \wedge v_2 \wedge \ldots \wedge v_p := \pi(v_1 \otimes \ldots \otimes v_p)$.

- Alternierende äußere Potenz: $\beta : V^p \to W$ heisst alternierend, wenn β p-linear ist und $\beta(v_1, \ldots, v_p) = 0$, wenn $v_i = v_j$ für ein $i \neq j$.
Zu jeder alternierenden Abbildung $\beta : V^p \to W$ gibt es genau eine lineare Abbildung $\Psi : \wedge^p V \to W$ mit $\alpha : V \to \wedge^p V$.

- Satz: Wenn e_1, \ldots, e_n eine Basis von V ist, dann ist $\{e_{i_1} \wedge \ldots \wedge e_{i_p} \mid 1 \leq i_1 < i_2 < \ldots < i_p \leq n\}$ eine Basis von $\wedge^p W$. Insbesondere gilt:
\[p > n \Rightarrow \wedge^p V = 0 \quad p = n \Rightarrow \wedge^n V \cong K \]

- Dimension der äußeren Potenz: $p = 0$, $\wedge^0 V := K$, $\dim \wedge^p V = \binom{n}{p}$

- Algebra: Ein Vektorraum A, der auch ein Ring (meist mit $1 \in A$) ist, wobei die Ringmultiplikation bilinear ist: $K \to A : k \mapsto k \cdot 1$ (K erscheint als Unterkörper der Algebra A).

- Produkt: $(V_1 \wedge \ldots \wedge v_p) \cdot (w_1 \wedge \ldots \wedge w_q) := v_1 \wedge \ldots \wedge v_p \wedge w_1 \wedge \ldots \wedge w_q \ (= 0, \text{ falls } p + q > n)$
\[v_1, \ldots, v_p \in V \text{ ist linear unabh. } \Leftrightarrow v_1 \wedge \ldots \wedge v_p \neq 0 \]

- Satz: Ausser $\mathbb{R}, \mathbb{C}, \mathbb{H}$ gibt es keine weiteren endlichdimensionalen Divisionsalgebren über \mathbb{R}.

5 Fragen

5.1 Lineare Algebra II

- Normalformen von Matrizen
- Körper mit 9 Elementen
- Elementare Zeilen-/Spalten-Transformationen \to Elementarmatrizen (wie sehen die aus) \to diagonalmatrizen als Repräsentanten für bel. Matrizen, wenn Zeilen-/Spalten-Transformationen zugelassen (anmultiplizieren von Elementarmatrizen von rechts bzw. links)
• Matrizen von \(\text{HOM}(V, W) \) im Vergleich zu Matrizen in \(\text{END}(V) \)
• Zusammenhang hom. und inhomogene lineare Gleichungssysteme? (Affine Unterräume)
• Was bedeutet die Unlösbarkeit eines linearen Gleichungssystems geometrisch gesehen? (Bsp. 2 Gleichungen mit \(n \) Unbekannten)
• Skalarprodukt: Definition + wofür gut, Existenz, auch im Komplexen
• Definition: \(\cos \varphi = \frac{\langle x, y \rangle}{\|x\| \|y\|} \)
• Cauchy-Schwarz: \(-1 \leq \cos \varphi \leq 1 \)
• Unter welcher Abbildung bleibt das Skalarprodukt erhalten? (d.h. Winkel und Längen: Orthogonale Abbildungen, mit orthogonalen Matrizen, \(\det A = 1 \); Spaltenvektoren alle normiert und senkrecht, d.h. Skalarprodukt ist 0)
• Eigenwerte, -vektoren
• Charakteristisches Polynom (Herleitung des Zusammenhangs)
• Diagonalsierbarkeit, Triagonalsierbarkeit?
• Beispiel: Endomorphismus ohne Eigenwert (Drehung im \(\mathbb{R}^2 \))
• Definition: Affiner Raum
• Zusammenhang mit linearen Gleichungssystemen (Bsp. \(x + y + z = 1 \) und \(x + y + z = 2 \) - geometrische Erklärung)
• Projektive Geometrie?
• Euklidische Geometrie? (Skalarprodukt, geometrische Bedeutung, Cauchy-Schwarz)
• Orthogonale (unitäre) Endomorphismen?

5.2 Algebra und Zahlentheorie

• Beweis: \(G \) abelsch und einfach \(\Rightarrow G \cong \mathbb{Z}_p \)
 (Jede zyklische UG ist in Abelschen Gruppen \(\textrm{NT} \Rightarrow G \) ist zyklisch, weil nur die \(\textrm{NT} e, G \))
• Beweis: \(G \) einfache \(p \)-Gruppe \(\Rightarrow G \cong \mathbb{Z}_p \) (\(p \)-Gruppen haben nicht-triviales Zentrum \(\Rightarrow G = \mathbb{Z}(G) \), weil \(\mathbb{Z}(G) \) Normalteiler.
• Beweis: \(p \)-Gruppen haben nicht-triviales Zentrum
• Wie lauten die Sylow-Sätze? (Beweisidee)
• Was ist die Sylow-2-UG der \(S_5 \)?
• Eine \(p \)-Gruppe operiert auf einer Menge und läßt ein Element fest. Wie zeigt man, dass noch mindestens ein anderes Element festgehalten wird?
• Struktursatz für endlich erzeugte Module über Hauptidealringen
• Wie sehen halbeinfache \(\mathbb{Z} \)-Moduln aus? (Jede abelsche Gruppe ist \(\mathbb{Z} \)-Modul, einfach sind die \(\mathbb{Z}_p \) mit \(p \) prim, also sind halbeinfach \(H = \mathbb{Z}_{p_1} \oplus \mathbb{Z}_{p_2} \oplus \ldots \). Bei endlich vielen direkten Summanden ist \(H \cong \mathbb{Z}_{p_1 \cdot p_2 \cdot \ldots \cdot p_n} \), bei unendlich vielen ist \(H \) nicht zyklisch.)

20
• Definition, Beispiele: p-Gruppen, nicht-kommutative p-Gruppe, Symmetriegruppe des Quadrats mit Ordnung 8, Kommutativität in p-Gruppen

• Konstruktion von Körpern durch $k[x]/k[x]f(x)$, mit $f(x)$ Minimalpolynom (warum sind das Körper? MIR $K[x] \Rightarrow$ Primideal $k[x]f(x)$ ist maximal)

• Endlichen Körper als Grundkörper nehmen F_3 und Minimalpolynom $f(x) \in F_3[x]$ finden mit Grad 2 (Grad der Körpererweiterung $= \text{Grad des Minimalpolynoms}$)

• Wieso gibt es in endlichen Körpern zu jedem Grad irreduzible Polynome?

• Primzahlen in Ringen?

• Definition: Primideal

• Beweis: P Primideal $\iff f$ Integral

• Kann man in allen Ringen Primzahlen einführen? (Bsp. Euklidische Ringen (Def.), sonst?)

• Isomorphiesätze

• Multiplikative Funktionen

• Eulersche φ-Funktion

• Chinesische Restsatz

• Unendlichkeit von \mathbb{P} mit Beweis (Euklid)

• Primzahlen in Ringen

• Restklassenkörper \mathbb{Z}/\mathbb{Z}_p, warum nur für Primzahlen?

• Definition: Addition/Multiplikation in \mathbb{Z}/\mathbb{Z}_p? (Wohldefiniertheit, quadrat. Reste)

• Hat $x \equiv 3(17)$ Lösung?

• Definition: Legendre-Symbol?

• Definition: Quadratisches Reziprozitätsgesetz