Algebra und Zahlentheorie Zusammenfassung

Michael Jaeger

22. Januar 2001

1 Teilbarkeit

1.1 \mathbb{N} und \mathbb{Z}

- Peanoaxiome: "Natürliche Zahlen" sind eine Menge ℕ mit
 - 1. $\mathbb{N} \ni \text{Zahl namens } 1 \ (\Rightarrow \mathbb{N} \neq \emptyset)$
 - 2. Jede Zahl in N hat einen "Nachfolger" N(n) (später "n+1")
 - 3. Es gibt kein $n \in \mathbb{N}$ mit 1 = N(n)
 - 4. N ist injektiv, d.h. $N(n) = N(m) \Rightarrow n = m$
 - 5. Prinzip der "vollständigen Induktion": Jede Menge von natürlichen Zahlen, welche 1 enthält und mit n auch N(n) enthält, enthält bereits alle nat. Zahlen. (Dieses Axiom lässt sich für "induktive" oder "rekursive" Definitionen verwenden.)

Beispiel: Fibonacci-Folge: $a_1 = a_2 = 1$ $a_{n+1} = a_n + a_{n-1} \quad \forall n > 1$

- Addition, Multiplikation, Ordnung: n + 1 := N(n). Angenommen, n + n sei bereits definiert, dann sei n + N(n) = N(n + m).
- Teiler: $n \in \mathbb{Z}$ "teilt" $m \in \mathbb{Z}$ ("Teiler von"), geschrieben $n|m:\Leftrightarrow \exists x \in \mathbb{Z}$ mit $m=n\cdot x$. Für alle $a,b,c,d,x,y\in \mathbb{Z}$ gilt:
 - 1. $d|a \Rightarrow d|ab$
 - 2. $d|c \text{ und } c|a \Rightarrow d|a \ (c = kd, a = mc = (mk)d)$
 - 3. d|a und $d|b \Rightarrow d|(xa+yb)$ (bleibt auch richtig für Lin.komb. von mehr als zwei Zahlen)
 - 4. $d|c \Rightarrow c = 0 \text{ oder } |d| < |c|$
 - 5. $d|c \text{ und } c|d \Leftrightarrow c = \pm d$
- Division mit Rest: Sei $a, b \in \mathbb{Z}, b \neq 0$. Dann $\exists q \in \mathbb{Z}$ und ein Rest $r \in \{0, 1, ..., |b|\}$ mit a = bq + r.

1.2 ggT und euklidischer Algorithmus

- ggt und kgV: $\forall a, b \in \mathbb{Z}$, nicht beide = 0, sei d =: (a, b) der "größte gemeinsame Teiler" (≥ 0) (existiert immer!). Konvention: (0,0) := 0 und (0,b) := |b| Je zwei $a,b \in \mathbb{Z}$ besitzen ein "kleinstes gemeinsames Vielfaches" $\in \mathbb{N} \cup \{0\}$ (weil $|a| \cdot |b|$ gem. Vielfaches ist).

- Teilerfremd: Seien $a, b \in \mathbb{Z}$, nicht beide = 0, mit d := (a, b). Dann ist $\{xa + yb | x, y \in \mathbb{Z}\} = d\mathbb{Z} = \{m \cdot d | m \in \mathbb{Z}\}$ und d ist die kleinste nat. Zahl, die sich als ganzzahlige Linearkomb. von a und b schreiben lässt.
 - a und b heissen "teilerfremd" : $\Leftrightarrow d=(a,b)=1$. In diesem Fall (und nur dann!) ist die "lineare diophantische Gleichung" xa+yb=1 durch $a,y\in\mathbb{Z}$ lösbar. (Wenn a=b=0, dann $L=\{x0+y0|x,y\in\mathbb{Z}\}=\{0\}=0\cdot\mathbb{Z}$.)
 - Die Teilbarkeit liefert eine "**Teilordnung**" auf \mathbb{N} bzw. \mathbb{Z} . Auch bezüglich dieser Teilordnung haben ggT und kgV Optimalitäts- bzw. Minimalitätseigenschaft.
- Eigenschaften von ggT und kgV: Seien $a, b \in \mathbb{Z}$, nicht beide = 0, ferner $c, t \in \mathbb{N}$, t gemeinsamer Teiler von a, b. Dann gilt:
 - $(ca, cb) = c \cdot (a, b)$
 - $(\frac{a}{t}, \frac{b}{t}) = \frac{(a,b)}{t}$
 - Für kgV (a, b) := [a, b]Für a|v, b|v ist [a, b]|v, und $[a, b] \cdot (a, b) = |a \cdot b|$ und es gilt:

$$\mathbb{Z}[a,b] = \mathbb{Z}a \cdot \mathbb{Z}b = \mathbb{Z}a \cap \mathbb{Z}b$$
 $\mathbb{Z}(a,b) = \mathbb{Z}a + \mathbb{Z}b$

- Euklidischer Algorithmus: Seien $a, b \in \mathbb{Z}$, beide $\neq 0$. $b|a \Rightarrow d = (a, b) = |b|$. Andernfalls ergibt sich d = (a, b) als letzter nicht-verschwindender Rest von r_n des folgenden Schemas von Div. mit Rest:
 - $a = q_1b + r_1$ $(r_1 \neq 0 \Rightarrow r_1 \in \mathbb{N})$
 - $\bullet \ \ b = q_2 r_1 + r_2$
 - $r_1 = q_3 r_2 + r_3$
 - :
 - $r_{n-2} = q_n r_{n-1} + r_n$
 - $\bullet \ r_{n-1} = q_{n+} r_n$

Die r_k bilden eine absteigende Folge $\in \mathbb{N} \Rightarrow$ brechen ab. Letzte Zeile: $r_n | r_{n-1}$, n-te Zeile: $r_n | r_{n-2} \dots \Rightarrow^{vollst.Ind.} r_n | a, b \Rightarrow r_n | d = (a, b)$. Ausserdem: r_n ist (ganzzahlige Linearkombination) von der Form $xa + yb \Rightarrow d | r_n \Rightarrow d = r_n$ und damit

$$\begin{split} r_n &= r_{n-2} - q_n r_{n-1} \\ &= r_{n-2} - q_n (r_{n-3} - q_{n-1} r_{n-2}) \\ &= (1 + q_n q_{n-1}) r_{n-2} - q_n r_{n-3} \\ &\vdots \\ &= xa + yb \end{split}$$

Die Reste bilden eine umgekehrt durchlaufene Fibonacci-Folge $(a_1 = a_2 = 1, a_{n+1} := a_n + a_{n-1})$. Damit ergibt sich für die **Laufzeit**, dass wenn $a, b \in \mathbb{Z} \setminus \{0\}$, der euklidische Algorithmus für die Berechnung des ggT von a und b weniger Schritte benötigt als

$$\frac{\log\left(\frac{1}{\sqrt{5}} + \min\{|a|, |b|\}\right) + \log\sqrt{5}}{\log\left(\frac{\sqrt{5}+1}{2}\right)}$$

1.3 Primfaktorzerlegung

- **Primzahl:** $p \in \mathbb{N}$ heißt "Primzahl", wenn p > 1 und p nur die trivialen Teiler $\pm 1, \pm p$ besitzt. Jedes $n \in \mathbb{N}$ ist ein Produkt von Primzahlen.
- Irreduzible Elemente: Elemente, die sich höchstens trivial in Produkte zerlegen lassen, die Primfaktorzerlegung aber nicht eindeutig ist. Z.B. $\underbrace{n+m\sqrt{-26}}_{d}$, die nur ± 1 und $\pm d$ als Teiler haben (z.B. 3).
- Hilfssätze: Seien $a, b, c \in \mathbb{Z}$ und (a, b) = 1 (teilerfremd), dann gilt: $a|bc \Rightarrow a|c$. Seien $b, c \in \mathbb{Z}$, p Primzahl mit $p|b \cdot c \Rightarrow p|b$ oder c
- Satz der eindeutigen Primzahlzerlegung: Jede nat. Zahl n∈ N lässt sich als Produkt von Primzahlen schreiben. Diese Faktoren ("Primfaktoren") sind bis auf Reihenfolge eindeutig.
- p_i -Ordnung: Jedes $a \in \mathbb{Z} \setminus \{0\}$ besitzt eine Darstellung als

$$a = \pm \prod_{j=1}^{m} p_j^{\nu_{p_j}(a)}$$

Dabei ist $\nu_{p_j}(a)$ die " p_j -Ordnung" von a und $\nu_{p_j}(a) = 0$, wenn $p_j \nmid a \Rightarrow a = \pm \Pi_{\text{alle Primzahlen}} p^{\nu_p(a)}$. Es gilt weiterhin:

- $\nu_p(0) := \infty$
- $a, b \in \mathbb{Z}, p \in \mathbb{P} \Rightarrow (a, b) = \prod_{\mathbb{P}} p^{\min\{\nu_p(a), \nu_p(b)\}}$
- $\bullet \ [a,b] = \prod_{\mathbb{P}} p^{\max\{\nu_p(a),\nu_p(b)\}}$
- $\mathbb{Q} := \{\frac{m}{n} | m \in \mathbb{Z}, n \in \mathbb{Z} \setminus \{0\}\}$ und $\nu_p\left(\frac{m}{n}\right) := \nu_p(m) \nu_p(n) \ (= \infty \text{ für } m = 0 \text{ und } = \nu_p(m),$ wenn n = 1). $m = p^{\nu_p(m)}m'$ und $n = p^{\nu_p(n)}n'$ sind wohldefiniert und ändern sich nicht beim Erweitern der Kürzen.

 $\alpha \in \mathbb{Q} \Rightarrow \nu_p(\alpha)$ definiert durch $\alpha = p^{\nu_p(\alpha)} \cdot \frac{m'}{n'}, \quad p \nmid m', n'.$

- Satz: $a, b \in \mathbb{Q}$, $p \text{ Primzahl} \Rightarrow \nu_p(a+b) = \nu_p(a) + \nu_p(b) \text{ und } \nu_p\left(\frac{a}{b}\right) = \nu_p(a) - \nu_p(b)$. $b \neq 0$: $\nu_p(a+b) \geq \min\{\nu_p(a), \nu_p(b)\}$.

 $\nu_p(r^2) = 2\nu_p(r) \Rightarrow \sqrt{2} \notin \mathbb{Q}$, andernfalls wäre $1 = \nu_2(2) = \nu_2(\sqrt{2}^2) = 2\nu_2(\sqrt{2})$ $\forall d \in \mathbb{N}$, die nicht bereits in \mathbb{N} Quadratwurzel sind gilt $\sqrt{d} \notin \mathbb{Q}$

1.4 Primzahlen

- Existenz unendlich vieler Primzahlen: Die Menge der Primzahlen $\mathbb{P} = \{2, 3, 5, 7, \ldots\}$ ist unendlich.
- Primzahlsatz von Hadamar und Vallee-Poussin:

$$\Pi(x) \sim \frac{x}{\log x}$$
, d.h. $\lim_{x \to \infty} \frac{\pi(x)}{\frac{x}{\log x}} = 1$

Es gilt $\frac{x}{\log x} \backsim li(x)$, genauer: $li(x) = \frac{x}{\log x} + O(\frac{x}{\log^2 x})$ heißt f(x) = g(x) + O(h(x)) heißt: $|f(x) - g(x)| \le ch(x)$ mit einem $c \in \mathbb{R}$ unabh. von x.

 $|f(x)-g(x)| \leq ch(x)$ mit einem $c \in \mathbb{R}$ unabh. von x. $\pi(x) \backsim li(x) = \int_2^x \frac{dt}{\log t}$ hat folgende Interpretation: $\frac{1}{\log n}$ gibt die Wahrscheinlichkeit, dass eine zufällig gewählte grosse Zahl $n \in \mathbb{N}$ prim ist! Also $\pi(x) = li(x) + O(\sqrt{x}\log c)$ würde aus der Riemannschen Vermutung folgen: $\zeta(s) := \Sigma_{\mathbb{N}} \frac{1}{n^s}$ konvergiert für s > 1, $s \in \mathbb{R}$ und $\Pi_{\mathbb{P}} \frac{1}{1-p^{-s}}$ konv. in Res > 1 lässt sich eindeutig fortsetzenn nach $\mathbb{C} \setminus \{1\}$.

Die Riemannsche Vermutung ist nun: ζ hat in 0 < Res < 1 Nullstellen nur auf der Geraden $\text{Re}s = \frac{1}{2}$.

- Primzahlsatz (Vinogradov, Korobar): \exists Konstante c > 0 mit

$$\pi(x) = \operatorname{li} x + O\left(x \exp\left(-c\log^{\frac{3}{5}} x/(\log\log x)^{\frac{1}{5}}\right)\right)$$

- Goldbach-Vermutung: Jede gerade Zahl < 2 ist die Summe zweier Primzahlen. Jedes $n \in 2\mathbb{N} + 1$ ist die Summe von drei Primzahlen.
- Vermutung über Primzahlzwillinge: Es gibt unendlich viele $p, p+2 \in \mathbb{P}$; genauer: #Primzahlzwillinge $\leq x$ sollte $\pi_2(x) \backsim \frac{x}{\log^2 x} \cdot 2 \cdot \prod_{p \in \mathbb{P}, p > 2} \left(1 \frac{1}{(p-2)^2}\right)$. π konv. $\Leftrightarrow \Sigma_{p > 2, p \text{ prim}} \log \left(1 \frac{1}{(p-1)^2}\right)$ konv.
- Satz von Tschebyscheff: $\forall x$ gilt: $\frac{1}{4} \cdot \frac{x}{\log x} < \pi(x) \le 6 \frac{x}{\log x}$

1.5 Kongruenzen und Reste

- Kongruent: Seien $a, b \in \mathbb{Z}$. a heißt "kongruent" zu b "modulo n" kurz $a \equiv b \mod m$ oder $a \equiv b(m)$ oder $a \equiv^m b$, wenn gilt: m|a-b oder auch $\exists k \in \mathbb{Z} \text{ mit } a=b+km$ oder "bei Division mit Rest durch m haben a und b den gleichen Rest" (wenn $m \neq 0$). " \equiv^m " ist eine Äquivalenzrelation auf m. $m = 0 \Rightarrow$ " \equiv^m " bedeutet " \equiv ".
- Eine Klasseneinteilung:

$$[a]_m := \{b = a + km \mid k \in \mathbb{Z}\}\$$

Z.B.: $[0]_2$ =gerade Zahlen, $[1]_2$ =ungerade Zahlen. $\mathbb{Z}/m\mathbb{Z} := \{\text{alle Äquivalenzklassen} \mod m\}.$

Z.B.
$$\mathbb{Z}/0\mathbb{Z} = \mathbb{Z}$$
 und $m \neq 0 \Rightarrow \mathbb{Z}/m\mathbb{Z} = \{[0]_m, [1]_m, \dots, [m-1]_m\}$

- Multiplikation und Addition auf $\mathbb{Z}/m\mathbb{Z}$: Sei $m \in \mathbb{Z}$. Addition und Multiplikation werden auf $\mathbb{Z}/m\mathbb{Z}$ definiert durch $[a]_m + [b]_m := [a+b]_m$, $[a]_m \cdot [b]_m := [a \cdot b]_m$ (kurz: [a] + [b] = [a+b], wenn m fest gewählt; nicht verwechseln mit der Gaussklammer!). Diese Operationen sind "wohldefiniert", d.h. unabh. von der Wahl der Repräsentanten. $0, 1, \ldots, m-1$ heißen "kleinste nicht-negative Reste mod m" und bilden ein Repräsentantensystem.
- Satz: In $\mathbb{Z}/m\mathbb{Z}$ gelten für alle $[a], [b], [c] \in \mathbb{Z}/m\mathbb{Z}$:
 - ([a] + [b]) + [c] = [a] + ([b] + [c])
 - [a] + [0] = [a]
 - $\forall [a] \exists [x] \in \mathbb{Z}/m\mathbb{Z} \text{ mit } [a] + [x] = [0] \text{ n\"{a}mlich } [x] = [-a]$
 - [a] + [b] = [b] + [a]
 - $([a] \cdot [b]) \cdot [c]) = [a] \cdot ([b] \cdot [c])$
 - $([a] + [b]) \cdot [c] = [a] \cdot [c] + [b] \cdot [c]$
- Prime Restklasse: Seien $a, b \in \mathbb{Z}$ und $m \in \mathbb{N}$. Aus $a \equiv b \mod m$ und (a, m) = 1 folgt (b, m) = 1. $[a]_m$ heißt darum "prime Restklasse mod m" (repräsentantenunabhängig). Sei $m \in \mathbb{N}$, $(\mathbb{Z}/m\mathbb{Z})^*$ die Menge der primen Restklassen mod m_i , [a], $[b] \in (\mathbb{Z}/m\mathbb{Z})^*$. Dann gilt:
 - 1. auch $[a][b] \in (\mathbb{Z}/m\mathbb{Z})^*$
 - 2. die Gleichung [a][x] = [1] ist in $(\mathbb{Z}/m\mathbb{Z})^*$ lösbar, d.h. $\exists x \in \mathbb{Z} : ax \equiv 1 \mod m$. Dabei ist $x \mod m$ eindeutig bestimmt.

 $[a]^{-1}$ bestimmt sich durch den euklidischen Algorithmus.

Für $m \in \mathbb{Z}$, $a, c \in \mathbb{Z}$, (a, m) = 1, $a_1, \ldots, a_m \in \mathbb{Z}$ sei irgendein vollst. Restsystem mod m. Dann gilt:

- 1. Die Kongruenz $ax \equiv c \mod m$ hat eine $\mod m$ eindeutige Lösung $x \in \mathbb{Z}$
- 2. Auch aa_1, aa_2, \ldots, aa_m ist ein vollst. Restsystem

Für $m \in \mathbb{N}$, $a, c \in \mathbb{Z}$ ist also die Kongruenz $ax \equiv c(m)$ lösbar $\Leftrightarrow d := (a, m) \mid c$. Die Lösung ist dann mod $\frac{m}{d}$ eindeutig bestimmt, d.h. mit $[x]_m$ ist auch $[x]_m$, $[x + \frac{m}{d}]_m$, $[x + 2\frac{m}{d}]_m$, ..., $[x + (d-1)\frac{m}{d}]_m$ Lösung.

- Haskos Siebenerregel:

$$\forall b_i \in \{0, 1, \dots, 99\} : 7 \mid m = b_0 + b_1 100 + \dots + b_n 100^n \Leftrightarrow 7 \mid b_0 + 2b_1 + \dots + 2^n b_n$$

- Chinesischer Restsatz: Seien m_1, \ldots, m_n paarweise teilerfremd $\in \mathbb{N}$ und $a_1, \ldots, a_n \in \mathbb{Z}$ $\Rightarrow \exists x \in \mathbb{Z} \text{ mit } x \equiv a_1(m_1), x \equiv a_2(m_2), \ldots, x \equiv a_n(m_n)$ und x ist eindeutig bestimmt $mod \ m_1 \cdot m_2 \cdot \ldots \cdot m_n$.

Die Abbildung $[x]_{m_1 \cdots m_n} \mapsto ([x]_{m_1}, \dots, [x]_{m_n})$ ist eine bijektive Abb.:

$$\mathbb{Z}/(m_1 \cdot \ldots \cdot m_n)\mathbb{Z} \to \mathbb{Z}/m_1\mathbb{Z} \times \ldots \times \mathbb{Z}/m_n\mathbb{Z}$$
$$(\mathbb{Z}/(m_1 \cdot \ldots \cdot m_n)\mathbb{Z})^* \to (\mathbb{Z}/m_1\mathbb{Z})^* \times \ldots \times (\mathbb{Z}/m_n\mathbb{Z})^*$$

wenn m_1, \ldots, m_n paarweise teilerfremd.

- Eulersche Phi-Funktion: $\varphi(1) := 1$. Für $m \in \mathbb{N}, m > 1$ sei $\varphi(m) := \#\mathbb{Z}/m\mathbb{Z}^* = \#\{0 < a < m \mid a \in \mathbb{N}, (a.m) = 1\}$

Die Eulersche φ -Funktion ist "multiplikativ", d.h. $\varphi: \mathbb{N} \to \mathbb{R}$ mit $\varphi(1) = 1$ und $\varphi(mn) = \varphi(m)\varphi(n)$ für $(m,n) = 1 \Rightarrow \varphi(n) = n \cdot \prod_{p \in \mathbb{P}, \ p|n} (1-\frac{1}{p})$, weil $n = \prod_{\mathbb{P}} p^{\nu_p(n)}$ Also ist \mathbb{P} unendlich!

 $\varphi(n)$ ist die Anzahl der natürlichen Zahlen $a \leq n$, welche zu n teilerfremd sind.

2 Gruppen

2.1 Kongruenzen und Reste

- Multiplikative Gruppe: G heißt multiplikative Gruppe, wenn gilt:
 - 1. In G existiert eine "innere Verknüpfung", d.h. Abb. $G \times G \to G : (a, b) \mapsto a \cdot b \in G \ \forall a, b \in G$
 - 2. $(ab)c = a(bc) \quad \forall a, b, c \in G$
 - 3. \exists Einselement oder neutrales Element $e \in G$ und $ae = a \quad \forall a \in G$
 - 4. $\forall a \in G \exists$, inverses Element" $a^{-1} \in G$ mit $aa^{-1} = e$. G heißt "kommutativ" oder abelsche Gruppe, wenn zusätzlich gilt:
 - 5. $ab = ba \quad \forall a, b \in G$. In diesem Fall häufig "+" anstelle von "·", dabei "0" anstelle "e"; bei multipl. Gruppen häufig "1" statt "e". Zur Präzisierung wird häufig die Verknüpfung mitgenannt, z.B. in der Form (G, \cdot) oder (G, +), z.B. $(\mathbb{R}, +)$, $(\mathbb{R} \setminus \{0\}, \cdot)$. Bei additiv geschriebenen Gruppen schreibt man "-a" anstelle von " a^{-1} ".

Aus der Induktion über die Anzahl der Faktoren folgt, dass sich das Assioziativgestz (und gegebenenfalls auch das Kommutativgesetz) auf n Faktoren überträgt, d.h. in $a_1 \cdot a_2 \cdot \ldots \cdot a_n$ sind beliebige Klammersetzungen erlaubt (bzw. Umordnungen).

Sei G eine (multiplikative) Gruppe. Dann gilt:

- 1. $ea = ae = a \quad \forall a \in G$
- 2. e ist eindeutig bestimmt.
- $3. \ a^{-1}a=aa^{-1}=e \quad \forall a \in G$
- 4. $\forall a \in G \text{ ist } a^{-1} \text{ eind. bestimmt durch } a$
- 5. $(ab)^{-1} = b^{-1}a^{-1} \quad \forall a, b \in G$
- 6. $(a^{-1})^{-1} = a$
- 7. ax = b und ya = b sind eindeutig lösbar für $a, b \in G$, nämlich $x = a^{-1}b$, $y = ba^{-1}$
- 8. Kürzungsregel: $ab = ac \Rightarrow b = c$, $ba = ca \Rightarrow b = c$
- **Permutationen:** Permutationen können geschrieben werden als $2 \times n$ -Matrix:

$$\begin{pmatrix} x_1 & x_2 & \dots & x_n \\ x_{\pi(1)} & x_{\pi(2)} & \dots & x_{\pi(n)} \end{pmatrix}$$

oder in Zykelschreibweise

$$x_1 \to x_{\pi(1)} \to x_{\pi(\pi(1))} \to \ldots \to x_{\pi^n(1)}$$

- Symmetrische Gruppen: Die Symmetrische Gruppe S_n mit $n \in \mathbb{N}$ ist die Gruppe der Bijektionen oder Permutationen S_s einer n-elementigen Menge auf sich selbst. Es gilt:
 - 1. $\operatorname{ord} S_n = n!$
 - 2. S_n ist nicht kommutativ für n > 2
 - 3. S_n wird von Transpositionen erzeugt
 - 4. Für jeden Zykel gilt $(a_1a_2...a_k)^{-1}=(a_ka_{k-1}...a_1)=(a_1a_ka_{k-1}...a_2)$ zyklische Vertauschung in der Schreibweise erlaubt.
 - 5. Zwei disjunkte Zykeln $(a_1 \dots a_k), (b_1 \dots b_m)$ (d.h. $\underbrace{\{a_1, \dots, a_k\}}_{\sigma} \cap \underbrace{\{b_1 \dots b_m\}}_{\tau} = \emptyset$) kommutieren miteinander, d.h. für σ und τ gilt: $\sigma\tau = \tau\sigma$
 - 6. Bei "Konjugation" durch $\sigma \in S_n$, d.h. bei Abbildungen $S_n \to S_n : \tau \mapsto \sigma \tau \sigma^{-1}$ werden Zykeln nach folgenden Vorschriften transformiert: $\sigma(\underbrace{a_1 \dots a_k}) \sigma^{-1} = (\sigma(a_1)\sigma(a_2) \dots \sigma(a_k))$

2.2 Untergruppen und Homomorphismen

- Untergruppe: Sei (G, \cdot) Gruppe. Eine Untermenge $U \subseteq G$ heißt "Untergruppe" von G, wenn sie bzgl. der in G definierten Verknüpfung die Gruppenaxiome erfüllt, d.h. wenn
 - 1. $\forall a, b \in U$ auch $ab \in U$
 - 2. Das neutrale Element $e \in U$
 - 3. $\forall a \in U \text{ liegt auch } a^{-1} \in U$

Oder einfacher:

- 1. $U \neq \emptyset$
- 2. $\forall a, b \in U \text{ ist } ab^{-1} \in U$
- Homomorphismus: $f: G \to H$ sei Abbildung für die (mult.) Gruppen G, H. f heißt (Gruppen-)Homomorphismus, wenn gilt:

$$\forall a, b \in G: f(ab) = f(a)f(b)$$

f(e) = e, wenn e für das Einsel. in G und in H steht. $f(a) = f(ae) = f(a)f(e) \Rightarrow f(e)$ auch neutrales Element in H. Genauso $e = f(e) = f(aa^{-1}) = f(a)f(a^{-1}) \Rightarrow_{\text{Eindeutigkeit des Inversen}} f(a)^{-1} = f(a^{-1})$

- **Gruppenhomomorphismus:** Sei $h: G \to H$ Gruppenhomomorphismus (beide multiplikativ geschrieben, mit e und Inversen ()⁻¹). Dann gilt:
 - h(e) = e
 - $h(a^{-1}) = h(a)^{-1}$
 - \forall Untergruppen $U \subseteq G$ ist h(U) Untergruppe von H (inbes. H(G))
 - \forall Untergruppeen $V \subseteq H$ ist $h^{-1}V := \{x \in G \mid h(x) \in V\}$ Untergruppe von G
 - $h^{-1}(\{e\}) = h^{-1}(e) =: \text{Kern}h \text{ Untergruppe von } G$
 - h injektiv \Leftrightarrow Kern $h = \{e\}$
- Isomorphismus: $f: G \to H$ bijektiver Gruppenhom. (injektiv+surjektiv!). Dann heißt f "Isomorphismus". Wenn für zwei Gruppen G, H so ein Isomorphismus existiert, heissen G und H isomorph, $G \cong H$.

Für Isomorphismen $f: G \to H$ ist auch $f^{-1}: H \to G$ Isomorphismus und jede endliche Gruppe der Ordnung n ist isomorph zu einer Untergruppe der symmetrischen Gruppe S_n .

- **Zyklische Gruppe:** Eine (mult.) Gruppe heißt "zyklisch", wenn $\exists x \in G$ mit: G besteht nur aus x-Potenzen, d.h. $G\{\ldots, x^{-2}, x^{-1}, x^0 = e, x^1, x^2, \ldots\}$. Schreibweise dann: $G = \langle x \rangle$, bei additiven Gruppen $G = \langle x \rangle = \{\ldots, -2x, -x, 0, x, 2x, \ldots\}$.

Eine zyklische Gruppe ist immer isomorph zu entweder $(\mathbb{Z}, +)$ oder einer additiven $G(\mathbb{Z}/m\mathbb{Z}, +)$ $(m \in \mathbb{N})$. Wenn in dieser Gruppe $x^r = e$, so gilt m|r.

Das erzeugende El. von $\langle x \rangle$ ist nicht eindeutig. Für zylische Gruppen $G = \langle x \rangle$ ist jeder Gruppenhom. $h: G \Rightarrow H$ eindeutig best. durch h(x), denn $h(x^n) = (h(x))^n$. Wenn ord $x = m \in \mathbb{N}$ ($x^m = e, m$ minimal), dann muß auch $(h(x))^m = e \in H \Rightarrow \operatorname{ord} h(x) \mid m = \operatorname{ord} x$.

2.3 Index und Ordnung

- Äquivalenzklassen: $\forall a, b \in G \text{ sei } a \backsim b :\Leftrightarrow ab^{-1} \in H \Leftrightarrow a \in Hb := \{hb \mid h \in H\} \text{ (ist Äquivalenz relation)}.$

Die Äquivalenzklassen heissen "Rechtsnebenklassen" von H. Genauso: Linksnebenklassen bH zur Äquivalenzrelation $a \backsim b \Leftrightarrow b^{-1}a \in H$ (gleicher Begriff, wenn G kommutativ ist). Menge der Rechtsnebenklassen: $H \backslash G$, Menge der Linksnebenklassen: G/H.

Äquivalenzklassen bilden eine Partition von G in disjunkte Teilmengen ab, hier der Form Hb, dabei durchläuft b ein Repräsentantensystem von $H\backslash G$. Für H endlich sind alle Hb gleich mächtig, nämlich wie #H $(h_1b=h_2b\Rightarrow h_1=h_2)$.

Außerdem gilt: $\operatorname{ord} G = (\# H \setminus G) \cdot (\operatorname{ord} H)$

- Index von H in G: $\#H \setminus G =: (G:H) \text{ und } |G| = (G:H) \cdot |H|$

 $\#H\backslash G=\#G/H,$ denn ∃Bijektion zwischen Rechts- und Linksrestklassen vermöge $Hb\mapsto (Hb)^{-1}=\{b^{-1}h^{-1}\mid h\in H\}=b^{-1}H$

Sei G endliche Gruppe, $x \in G \Rightarrow \text{ord} x \mid \text{ord} G$, denn $\text{ord} x = \text{ord} \underbrace{\langle x \rangle}_{H} = \underbrace{\text{ord} G}_{G:H} \mid \text{ord} G$

So ist $\operatorname{ord} \mathbb{Z}/m\mathbb{Z} = m$ und für $t \mid m$ ist $\operatorname{ord} \left[\frac{m}{t}\right]_m = t$

- Satz von Euler: Sei G eine endliche Gruppe und $x \in G$. Dann ist $x^{\text{ord}G} = e$.

 $\operatorname{ord} x \mid \operatorname{ord} G = k \cdot \operatorname{ord} x \Rightarrow x^{\operatorname{ord} G} = (x^{\operatorname{ord} x})^k = e^{-kx}$

Folgerung von **Fermat**: Für $G = (\mathbb{Z}/m\mathbb{Z})^*$ (m > 1) gilt: $(a, m) = 1 \Rightarrow a^{\varphi(m)} \equiv 1 \mod m$, insbesondere m = p prim $a^{p-1} \equiv 1 \mod p \Rightarrow a^p \equiv a \mod p$ sogar für alle $a \in \mathbb{Z}$. Problem: Klassifikation aller (endlichen) Gruppen bis auf Isomorphie.

Jede endliche Gruppe von Primzahlordnung p ist isomorph zu $(\mathbb{Z}/p\mathbb{Z},+)$

2.4 Normalteiler und Faktorgruppen

- Konjugierte Untergruppe von H: Sei G eine mult. Gruppe, H Untergruppe. $\forall g \in G$ sei $H^g := gHg^{-1} = \{gHg^{-1} \mid h \in H\}$ die (durch g) "konjugierte Untergruppe von H". Für nicht-kommutative Gruppen G kann ebenfalls $H = H^g$ sein.

Normalteiler / Invariante Untergruppe: Eine Untergruppe H von G heißt "Normalteiler" oder "invariante Untergruppe", wenn $\forall g \in G : H^g = H$, geschrieben $H \triangleleft G$. Äquivalent sind dazu die Bedingungen Hg = gH oder $\forall g \in G \forall h \in H \exists k \in H : ghg^{-1} = k$ (Rechtsnebenklassen=Linksnebenklassen).

Es genügt zu verlangen, dass die konjugierte Gruppe in H liegt: $H^g \subseteq H \forall g \in G$, weil dann auch $g^{-1}Hg = H^{g^{-1}} \subseteq H \Rightarrow H \subseteq gHg^{-1} = H^g$.

Seien G', G Gruppen, $f: G' \to G$ Homomorphismus $N \triangleleft G \Rightarrow f^{-1}(N) \triangleleft G'$.

- Faktorgruppe: Sei N Normalteiler der (multiplikativen) Gruppe G. Dann ist die Menge der Restklassen G/N = N/G wieder Gruppe bzgl. repräsentantenweiser Multiplikation (mit ordG/N = (G:N)) $(Ng) \cdot (Nh) := Ngh$ (mit neutralem Element Ne = N und inversem Element $(Na)^{-1} = Na^{-1}$).

2.5 Isomorphiesätze

- Kanonische Projektion: Sei $N \triangleleft$ Gruppe G mit Restklassengruppe G/N. Die "kanonische Projektion"

$$\pi: G \to : g \mapsto Ng$$

ist ein surjektiver Gruppenhomomorphismus mit Kern=N.

Homomorphiesatz: Seien G und B Gruppen, $f:G\to B$ surjektiver Gruppenhomomorphismus. Dann ist $B\cong G/\mathrm{Kern} f$ und zwar wird die Isomorphie durch die Abbildung i gegeben durch i (Kerng) = f(g).

Hilfssatz: Sei G Gruppe mit Untergruppen H_1, H_2 und Normalteiler N. Dann ist:

- 1. auch $H_1 \cap H_2$ Untergruppe von G
- 2. $N \cap H_1$ Untergruppe von G
- 3. aus $H_2 \subseteq H_1 \subseteq G$ folgt $(G: H_2) = (G: H_1) \cdot (H_1: H_2)$
- 4. auch $H_1N:=\{hg\mid h\in H,g\in N\}$ Untergruppe von G und besitzt H_1 als Untergruppe und N als Normalteiler
- 1. Isomorphiesatz: Sei G Gruppe mit Untergruppe U und Normalteiler N

$$\Rightarrow U/(U \cap N) \cong UN/N$$

2. Isomorphiesatz: Sei $f: G \to G' = f(G)$ ein surjektiver Gruppenhomomorphismus mit KernK. Dann gibt es zwischen der Menge der Untergruppen $H \supseteq K$ von G und der Menge aller Untergruppen $H' \subseteq G'$ eine Bijektion $H \to H' = f(h)$, gegeben durch H' = f(H), $H = f^{-1}(H')$. Diese Bijektion ist inklusionserhaltend und bildet Normalteiler auf NT ab, und für NT $K \triangleleft N \triangleleft G$ gilt

$$G/N \cong G'/N' \cong (G/K)/(N/K)$$

2.6Operation von Gruppen auf Mengen

G (Gruppe, multipl.) "operiert" auf der Menge $M:\Leftrightarrow \exists Abbildung\ G\times M\to M: (x,s)\mapsto xs\in M$ mit den folgenden Eigenschaften:

- 1. (xy)s = x(ys) (keine Mult. in G!) $\forall x, y \in G \forall s \in M$
- $2. \ es = s \quad \forall s \in M$

M wird auch G-Menge genannt. $s\mapsto xs:M\to M$ ist eine Bijektion, denn die Abb. läßt sich durch x^{-1} umkehren und gehört somi zur Gruppe S_M der Bijektionen auf sich.

Jedes $x \in G$ definiert eine "Translation" $T_x : M \to M : s \mapsto xs, T_x \in S_M, T_e = id_M, T_{xy} = T_xT_y$ $\Rightarrow x \mapsto T_x : G \to S_M$ ist Homomorphismus.

 $\forall s \in M$ heißt $Gs := \{xs \in M \mid x \in G\}$ die "Bahn" oder der "Orbit" von s unter der Operation von G auf M und

$$G_s := \{x \in G \mid xs = s\}$$
 (Untergruppe von G)

die "Isotropiegruppe", "Fixgruppe" oder "Stabilisator" von $s \in M$.

G operiert "transitiv" auf M, wenn $\exists s \in M \text{ mit } Gs = M$. (Wenn transitiv $\Rightarrow \forall t \in M : Gt = M$) $M, \exists x \in G : t = xs, \forall t' \in M \exists x' \in G \text{ mit } t' = x's = x' \underbrace{(x^{-1}t)})$

Der **Zentralisator** von s ist

$$C_a(s) := \{x \in Gmid\sigma_x(s) = s, \text{ also } xs = sx\}$$

mit der Operation $G \times G \to G : (x,y) \to xyx^{-1}$. Das **Zentrum** ist $C_G = \{x \in G \mid xs = sx \forall s \in G \mid$ G}.

- Bahnenlängen und Indizes: Die Gruppe G operiere auf der Menge M.
 - 1. Die Einteilung der Menge M in Bahnen ist eine Einteilung in Äquivalenzklassen bzgl. der Relation $s \backsim t : \Leftrightarrow \exists x \in G : xs = t$.
 - 2. Innerhalb einer Bahn gilt: $t \in M = x \cdot s \Leftrightarrow y^{-1} \cdot x \cdot s = s \Leftrightarrow y^{-1}x \in G_s \Leftrightarrow x \text{ und } y \text{ liegen}$ in der gleichen Linksnebenklasse von G.
 - 3. \exists Bijektion zwischen Linksrestklassen mod G_s und den Elementen der Bahn Gs von s.
 - 4. Die Länge dieser Bahn $|G \cdot s|$ =Anzahl der Elemente der Menge $G \cdot s = (G : G_s)$
 - 5. $\forall t=x\cdot s$ aus der Bahn von s gilt: Die Isotropiegruppe $G_t=\{y\in G\mid yt=t\Leftrightarrow y$ xs = $xs \Leftrightarrow x^{-1}yxs = s\} = x \cdot G_s x^{-1}$, d.h. die Isotropiegruppen einer Bahn sind alle zueinander konjugiert.
 - 6. Isotropiegruppe G_s eines Elements ist Normalteiler in $G(G_s \triangleleft G) \Leftrightarrow G_s$ stabilisiert alle Elemente aus der Bahn von s.
- Klassenformel: Sei R ein Repräsentantensystem der Bahnen für die Operation der Gruppe G auf der Menge M. Dann ist M also die disjunkte Vereinigung aller $G \cdot r$ mit $r \in \mathbb{R}$: $M = \bigcup_{r \in \mathbb{R}} Gr \Rightarrow |M| = \Sigma_{r \in \mathbb{R}}(G:G_r).$
- RSA-Schema: Ein public-key Kryptosystem. Seien p, q zwei sehr grosse Primzahlen (geheim). Sie bilden das Produkt $p \cdot q = n$ (öffentlich) mit $\varphi(n) = (p-1) \cdot (q-1)$ (geheim). Wenn $\varphi(n)$ nicht geheim bleibt, kann man p und q aus $n = p \cdot q$ und $n - \varphi(n) + 1 = p + q$ errechnen. Nun wähle man eine Zahl s mit $(s, \varphi(n)) = 1$ (öffentlich) und verschlüssele $a \mapsto a^s \mod n$. Das Entschlüsseln geht dann mittels $(s, \varphi(n)) = 1 \quad \exists t : s \cdot t \equiv 1 \mod \varphi(n)$ $(s \in (\mathbb{Z}/\varphi(n)\varphi(n)\mathbb{Z})^* \Rightarrow \exists t = s^{-1} (\text{ Inverses in } (\mathbb{Z}/\varphi(n)\mathbb{Z} = ^*)))$ t kann mit dem euklidischen Algorithmus konstruiert werden. Andere Schreibweise: $s \cdot t =$

 $1 + k \cdot \varphi(n)$ $k \in \mathbb{N}$ und

 $(a^s)^t \equiv a^{s \cdot t} \equiv a^{1 + k \cdot \varphi(n)} \equiv a \cdot a^{k \cdot \varphi(n)} \equiv a \mod n$ (klar für (a, n) = 1 wg. kleinem Satz von Fermat)

- Kleiner Satz von Fermat: $a^{\varphi(n)} \equiv 1 \mod n \Rightarrow a^{k\varphi(n)} \equiv 1 \mod n \Rightarrow a \cdot a^{k\varphi(n)} \equiv a \mod n$

2.7 Sylowuntergruppen

- p-Gruppe: G heißt p-Gruppe (p Primzahl), wenn $\operatorname{ord}(G) = p^n$ ($n \in \mathbb{N}$). Für G endliche Gruppe, H Untergruppe $\subseteq G$, H "p-Untergruppe", wenn H ist p-Gruppe. H heißt "p-Sylowuntergruppe" von G, wenn $\operatorname{ord} H = p^n$ mit $p^n \mid \operatorname{ord} G$ und $p \nmid \frac{\operatorname{ord} G}{p^n}$ (also ist p^n die höchste p-Potenz, die $\operatorname{ord} G$ teilt).

Sei G endliche abelsche Gruppe und $n \in \mathbb{N}$ mit $x^n = e \forall x \in G$. Dann gibt es ein $m \in \mathbb{N}$ mit ord $G \mid n^m \Rightarrow$ so ein n kann nicht teilerfremd zur Gruppenordnung sein!

Sei G eine endliche abelsche Gruppe, p prim mit $p \mid \text{ord} G \Rightarrow G$ hat eine Untergruppe der Ordnung p.

Sei G endliche Gruppe, p Primteiler von ordG, dann gilt:

- 1. Es existiert eine p-Sylowuntergruppe von G.
- 2. Jede p-Untergruppe H von G ist in einer p-Sylowuntergruppe enthalten.
- 3. Alle p-Sylowuntergruppen sind zueinander konjugiert
- 4. Die Anzahl der p-Sylowuntergruppen von p ist $\equiv 1 \mod p$.

Daraus folgt:

- 1. Sei G endliche p Gruppe $\neq \{e\}$. Dann hat G ein Zentrum $Z \neq \{e\}$.
- 2. Sei p prim. Gruppen G der Ordnung p^2 sind kommutativ.
- 3. Sei p > 2 prim, G Gruppe mit ordG = 2p. Dann ist G entweder zyklisch, d.h. $\cong \mathbb{Z}/2p\mathbb{Z}$ oder "**Didiererweiterung**" einer zyklischen Untergruppe $\langle x \rangle$ der Ordnung p, d.h. alle $y \in G \setminus \langle x \rangle$ haben Ordnung 2 und erfüllen $y \times y^{-1} = x^{-1}$ (Symmetriegruppe des regelmässigen p-Ecks).
- Klassenformel: Sei γ_0 die G-Bahn von S und $H \neq \{e\}$ p-Untergruppe von G. Auch H operiert per Konjugation auf γ und auf γ_0 , γ_0 zerfällt dabei in H-Bahnen $\gamma_1, \ldots, \gamma_k$:

$$p \nmid |\gamma_0| = \Sigma_{i=1}^k |\gamma_i| = \Sigma_{s \in \gamma_i} (\underbrace{H: H_{s_i}}_{p\text{-Untergruppe}}) \quad \text{(Indizes sind p-Potenzen)}$$

- $\Rightarrow \exists i \text{ oBdA } s_i = s', \text{ mit } (H:H_{s_i}) = 1 \Rightarrow H_{s'} = H$
- $\Rightarrow S \in \gamma_i$ ist invariant unter Konjunktion mit allen $x \in H$
- $\Rightarrow xS'x^{-1} = S' \Rightarrow$ alle $x \in H$ erfüllen $x \in N_G(S') \Rightarrow \subseteq N_G(S')$
- $\Rightarrow HS'$ ist Untergruppe von G und enthält S' als Normalteiler.

Wähle H wie oben als p-Sylowuntergruppe, d.h. $H \in \gamma$. Nun folgt zusätzlich H = S':

- $\Rightarrow \delta'$ liegt in der G-Bahn von S
- ⇒ alle Sylowuntergruppen liegen in der gleichen Bahn! (D.h. alle sind zueinander konjugiert)

Sei noch spezieller H = S gewählt, dann gilt $|\gamma| = |\gamma_0| = \sum_{i=1}^K (H: H_{s_i})$.

Seien rechts nur p-Potenzen, dabei einmal die 1, wenn $S = S_1 = H$ (oBdA), die anderen S_i sind echt konjugiert zu S_1 , erfüllen daher $H_{s_i} \subsetneq H$, also $(H:H_{s_i})=0 \mod p \Rightarrow \sum_{i=1}^k \equiv 1 \mod p$.

Außerdem ist jede (endliche) p-Gruppe G "auflösbar", d.h. \exists Kette von Untergruppen $\{e\}$ = $G_0 \triangleleft G_1 \triangleleft \ldots \triangleleft G_{n-1} \triangleleft G_n = G$, jedes $G_i \triangleleft G_{i+1}$ mit zyklischer Faktorgruppe G_{i+1}/G_i .

2.8 Produkte

- Direktes Produkt: Seien U und V (multiplikative) Gruppen. Das mengentheoretische Produkt $U \times V = \{(u,v) \mid u \in U, v \in V\}$ läßt sich mit Gruppenstrukturen versehen vermöge $(u_1v_1)(u_2v_2) = (u_1u_2,v_1v_2)$. Einselement: (e_U,e_V) , Inverses $(u,v)^{-1} = (u^{-1},v^{-1})$. $U \times V$ heißt dann "direktes Produkt" von U und V. Für V = U einfach U^2 geschrieben. Ebenso für mehr als zwei Faktoren, ebenso additiv.

Beispiel: $\mathbb{R}^n = n$ -faches direktes Prdoukt von $(\mathbb{R}, +)$ mit sich. Sei $G = U \times V$ direktes Produkt der Gruppen U, V, dann gilt:

- 1. $\operatorname{ord}(U \times V) = (\operatorname{ord} U) \cdot (\operatorname{ord} V)$
- 2. G enthält Normalteiler $U' := \{(u, e) \mid u \in U\}$ und $V' := \{(e, v) \mid v \in V\}$, isomorph zu U bzw. V. Diese erfüllen $U' \cap V' = \{(e, e)\}$
- 3. U' und V' kommutieren elementweise miteinander, d.h. $u'v' = v'u' \ \forall u' \in U', v' \in V'$
- 4. G wird erzeugt von U', V', d.h. sogar genauer U'V' = G. (Gilt nicht für Produkte aus unendlich vielen Faktoren!)
- 5. Die natürlichen Projektionen p_u, p_v auf die Komponenten, also $(u, v) \mapsto u$ bzw. v sind Gruppenhomomorphismen. Kern $p_u = V'$, Kern $p_v = U'$.
- Satz: Die Gruppe G enthalte zwei Normalteiler U, V mit folgenden Eigenschaften:
 - 1. $U \cap V = \{e\}$
 - 2. G = UV
 - 3. U und V kommutieren elementweise miteinander (d.h. $uv=vu \ \forall u \in U, v \in V) \Rightarrow G \cong U \times V$
- Chinesischer Restsatz (verfeinert): Seien $m, n \in \mathbb{N}$ teilerfremd. Dann gilt:
 - 1. $\mathbb{Z}/mn\mathbb{Z} \cong \mathbb{Z}/m\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z}$ (als Isomorphie additiver Gruppen)
 - 2. $\mathbb{Z}/mn\mathbb{Z}$)* $\cong /\mathbb{Z}/m\mathbb{Z}$)* $\times (\mathbb{Z}/n\mathbb{Z})$ * (als Isomorphie multiplikativer Gruppen)

Damals galt $\forall a \mod m, b \mod n \exists ! x \mod m n \text{ mit } x \equiv a(m), x \equiv b(n), \text{ außerdem: wenn } [a]_m \in (\mathbb{Z}/m\mathbb{Z})^*, b \in (\mathbb{Z}/n\mathbb{Z})^*, \text{ dann } x \in (\mathbb{Z}/mn\mathbb{Z})^*. \text{ Jetzt gilt zusätzlich: } [x]_{mn} \mapsto ([a]_m, [b]_n) \text{ ist Gruppenhomomorphismus. Genauso gilt dies für die Multiplikation.}$

2.9 Klassifikation endlicher abelscher Gruppen

Direkte Produkte zyklischer Gruppen $\prod_{i=1}^{n} \langle a_i \rangle$ sind abelsch.

- Hilfssätze: Sei (b) endliche und zyklisch (multipl. geschrieben), dann gilt:

$$\operatorname{ord} b = \operatorname{ord} \langle b \rangle = m \quad \text{und} \quad t \mid m \Rightarrow \operatorname{ord} b^t = \frac{m}{t}$$

Sei $\langle a \rangle$ endl. zykl., ord $a = \operatorname{ord}\langle a \rangle = n \Rightarrow \operatorname{ord}a^v = \frac{n}{(n,r)}$

Sei A endliche abelsche Gruppe, $Z=\langle a\rangle$ eine zyklische Untergruppe maximaler Ordnung. ord $z=\operatorname{ord} a=:n$. Die Faktorgruppe A/Z (wieder abelsch) hat zyklische Untergruppen U/Z (vgl. 2. Isomorphiesatz) mit erzeugendem Element $b\mod Z=bZ=Zb$ mit einem Repräsentanten $b\in A$. Dieses b kann so gewählt werden, dass $\operatorname{ord}(b\mod Z)=\operatorname{ord} b$ (d.h. die kleinste Potenz b^t mit $b^t\in Z$ erfüllt bereits $b^t=e$).

Jede endliche abelsche Gruppe A ist isomorph zu einem direkten Produkt zyklischer Untergruppen.

Sei U abelsche Gruppe, erzeugt von b_1, \ldots, b_r , d.h. $U = \langle b_1 \rangle \langle b_2 \rangle \ldots \langle b_r \rangle$, dann gilt $U \cong \langle b_1 \rangle \times \ldots \times \langle b_r \rangle$ genau dann, wenn aus $b_1^{m_1} b_2^{m_2} \ldots b_r^{m_r} = e$ folgt: $t_1 \mid m_1, t_2 \mid m_2, \ldots, t_r \mid m_r$. Außerdem gilt für jede endliche abelsche Gruppe A, dass diese isomorph ist zu

- 1. einem direkten Produkt $\Pi(\mathbb{Z}/q\mathbb{Z})$ mit Primpotenzen q
- 2. einem direkten Produkt $\Pi(\mathbb{Z}/d_1\mathbb{Z}\times\ldots\times\mathbb{Z}/d_r\mathbb{Z})$ mit $d_{\nu}\in\mathbb{N}$ (> 1) mit $d_1\mid d_2\mid\ldots\mid d_{r-1}\mid d_r\mid (d_{\nu})$ heissen "Elementarteiler" für A). Sowohl die Menge und Multiplizität der Primpotenzen q und der Elementarteiler d_{ν} sind durch A eindeutig bestimmt und bestimmen A eindeutig bis auf Isomorphie.

Nun gilt: U_r =maximale Elementordnung in $\mathbb{Z}/d_1\mathbb{Z} \times \ldots \times \mathbb{Z}/d_r\mathbb{Z}$

- \Rightarrow eindeutig bestimmt durch A
- $\Rightarrow A/(\mathbb{Z}/d_r\mathbb{Z})$ hat nur noch maximale Element-Ordnung $d_r=1$, ebenso eindeutig bestimmt
- $\Rightarrow d_1 \mid d_2 \mid \ldots \mid d_r$ eindeutig bestimmt

Die Elementarteiler sind eindeutig bestimmt, nicht aber die Untergruppen selbst.

3 Ringe

- Ring: R heißt "Ring", wenn gilt:
 - 1. Es existieren zwei innere Verknüpfungen (Addition und Multiplikation)

$$R \times R \to R : (a, b) \mapsto a + b$$

 $R \times R \to R : (a, b) \mapsto a \cdot b$

- 2. (R, +) ist abelsche Gruppe (mit neutralem Element 0 und Inversem -a)
- 3. Die Multiplikation ist assoziativ, d.h.

$$(ab)c = a(bc) \quad \forall a, b, c, \in R$$

4. Das Distributivgesetz gilt, d.h.

$$a(b+c) = ab + ac$$
 $(b+c)a = ba + ca$ $\forall a, b, c \in R$

Für kommutative Ringe mit Eins gilt ferner:

- $ab = ba \quad \forall a, b \in R$
- $\exists 1 \in R \text{ mit: } 1 \cdot a = a \cdot 1 = a \quad \forall a \in R$
- Nullteiler: In einem Ring kann es vorkommen, dass 0 = a gilt. Außerdem kann es passieren, dass $a, b \in \mathbb{R}$ existieren mit $a \neq 0 \neq b$, aber ab = 0 (sog. "Nullteiler").
- Integritätsbereich: Ringe ohne Nullteiler heißen "Integritätsbereiche", wenn $R \neq \{0\}$ kommutativ mit 1 ist.

In Integritätsbereichen gilt die "Kürzungsregel":

$$ab = ac \Rightarrow ab - ac = 0 \Rightarrow a(b - c) = 0 \Rightarrow a = 0 \lor b = c$$

- Körper: R heißt "Körper", wenn $R = \{0\}$ abelsche Gruppe bzgl. der Multiplikation ist $(\Rightarrow$ automatisch Integritätsbereich, weil $a, b \in R \setminus \{0\} \Rightarrow$ ebenso ab).
- Einheit: $a \in R$ heißt "Einheit", wenn $a \mid 1$ gilt. Geschrieben $a \in R^*$. $(1 = ac \Rightarrow \text{jedes } b = 1 \cdot b = a(c \cdot b) \Rightarrow a \mid \text{jedes andere El. } b)$

 R^* ist die Menge der Einheiten in R.

In den Restklassenringen ist $(\mathbb{Z}/n\mathbb{Z})^*$ gerade die Menge der primen Restklassen. Sei $R \neq \{0\}$ kommutativer Ring mit 1. Dann gilt

- 1. $1 \neq 0$
- 2. R^* enthält keine Nullteiler
- 3. R^* ist multiplikative abelsche Gruppe
- 4. Seien $a, b \in R$ nicht Nullteiler:

$$a \mid b \text{ und } b \mid a \iff a \in bR^* \iff \exists c \in R^* \text{ mit } a = bc, \ b = c^{-1}a$$

- Primkörper/Charakteristik: Endliche Integritätsbereiche sind Körper. Insbesondere ist $\mathbb{Z}/m\mathbb{Z}$ Körper $\Leftrightarrow m=p$ prim, dann $\mathbb{F}_p:=\mathbb{Z}/p\mathbb{Z}$ ("Primkörper" der "Charakteristik p" genannt).
- Ringhomomorphismus: $f: R \to S$ heißt Ringhomomorphismus, wenn R, S Ringe:

$$f(a+b) = f(a) + f(b) \quad f(a \cdot b) = f(a) \cdot f(b) \quad \forall a, b \in R$$

 \Rightarrow f ist Homomorphismus für (R, +), d.h. z.B. f(0) = 0. $f \equiv 0$ zugelassen! D.h. nicht notwendig f(1) = 1.

f "Körperhomomorphismus" $\Leftrightarrow f(1) = 1$ und Ringhom. für R, S Körper.

Für bijektive Ring- und Körperhomomorphismen ist f^{-1} ebenfalls Homomorphismus.

R, S heissen "isomorph", wenn ein "Isomorphismus" $f: R \to S$ exisitert, d.h. umkehrbarer Homomorphismus.

Sei f Körperhomomorphismus, $f: R \to S$, $c \in R$, $c \neq 0$ $f(c) = f(c^{-1}) = f(cc^{-1}) = f(1) = 1$

- $\Rightarrow f(R^*) \subseteq S^* = S \setminus \{0\}$
- \Rightarrow f induziert auch Homomorphismus $R^* \to S^*$ f sogar injektiv: $f^{-1}\{0\} = \{0\}$ (als Homomorphismus der additiven Gruppe)

Körperhomomorphismen sind injektiv.

- Einsetzungshomomorphismus: $\mathbb{Q}[0] \to \mathbb{Q} : p(x) \mapsto p(a) \in \mathbb{Q} \ (a \in \mathbb{R} \text{ fest})$

3.1 Einfache Gruppen

Eine endliche Gruppe G heißt "einfach", wenn sie außer $\{1\}$ und G keinen Normalteiler besitzt. Wenn es nur abelsche einfache Gruppen gibt, ist jede endliche Gruppe auflösbar! (G auflösbar $\Leftrightarrow \exists \text{Kette } \{1\} \lhd G_1 \lhd G_2 \lhd \ldots \lhd G_n = G \quad \forall G_i \text{ Normalteiler in } G_{i+1}$) Bezüglich der Konjugationsoperation von A_5 auf sich zerfällt A_5 in

- 1 Bahn der Länge 1 ((1))
- 1 Bahn der Länge 15 (alle (ij)(kl))
- 1 Bahn der Länge 20 (alle (ijk))
- 2 Bahnen der Länge 12 jeweils aus Fünferzyklen
- Klassenformel: Σ Bahnenlängen = $60 = \#A_5$
- Polynomringe: "Einsetzungshomomorphismen" $\mathbb{Q}[x] \to \mathbb{C} : p(x) \mapsto p(\alpha)$
- Quadratischer Zahlkörper: Sei $d \in \mathbb{Z}$, $d \neq 0, 1$ und "quadratfrei", d.h. v(d) = 0 oder 1 für alle $p \in \mathbb{P}$ und sei

$$\alpha := \begin{cases} \sqrt{d} & \text{für } d \equiv 2, 4 \mod 4 \\ \frac{1+\sqrt{d}}{2} & \text{für } d \equiv 1 \mod 4 \end{cases}$$

Dann gilt

$$\mathbb{Q}[\alpha] = \{r + s\alpha \mid r, s \in \mathbb{Q}\} \quad \text{ist K\"{o}rper (,quadratischer Zahlk\"{o}rper"}$$

$$\mathbb{Z}[\alpha] = \{m + n\alpha \mid m, n \in \mathbb{Z}\} \quad \text{ist Ring (Ring } O_d \text{ der ganzen Zahlen in } \mathbb{Q}[\alpha])$$

Invertierbarkeit von $r + s\alpha$ für r, s nicht beide = 0. $r + s\alpha = u + v\sqrt{d}$ mit $u, v \in \mathbb{Q}$, beide = 0. wenn $n, m \in \mathbb{Z}$, (n, m) = 1, so ist

$$\mathbb{Z}/mn\mathbb{Z} \cong \mathbb{Z}/m\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z}$$
 Produkt von Ringen

Für $N = \prod_{\mathbb{P}} p^{v_{p(N)}}$ ist damit $\mathbb{Z}/N\mathbb{Z} \cong \prod_{\mathbb{P}} \mathbb{Z}/p^{v_{p}(N)}\mathbb{Z}$.

- Quotientenkörper: Zu jedem Integritätsbereich R gibt es einen "Quotientenkörper" K mit einem (injektiven) Einbettungshomomorphismus $i:R\to K$, so daß K der kleinste Körper ist, der i(R) enthält. K besitzt die folgende Eigenschaft ("universelle Eigenschaft"): \forall injektive Ringhomomorphismen $j:R\to L$ in einem Körper L gibt es genau einen Körperhomomorphismus $k:K\to L$ mit $j=k\circ i$ (K ist durch diese universelle Eigenschaft sogar bis auf Isomorphie eindeutig bestimmt).

3.2 Ideale und Restklassenringe

- Ideal: Sei R kommutativer Ring mit 1. $I \subseteq R$ heißt "Ideal", wenn
 - 1. I bzgl. "+" eine Untergruppe von R,
 - 2. $xI \subseteq I \quad \forall x \in R$

Für alle Ringhomomorphismen $f: R \to S$ ist Kern $f:=\{x \in R \mid f(x)=0\}$ ein Ideal von R. $x,y \in \text{Kern} \Rightarrow f(x)=f(y)=0.$ $f(x-y)=0 \Rightarrow x-y \in \text{Kern}.$ Sei $x \in \text{Kern}, \ r \in R \Rightarrow f(rx)=f(r)f(x)=f(r)\cdot 0=0 \Rightarrow rx \in \text{Kern}.$

- Kongruent modulo I: Sei I Ideal eines kommutativen Rings R und

$$x \equiv y \mod I :\Leftrightarrow x - y \in I \Leftrightarrow x \in y + I$$

Dies ist eine Äquivalenzrelation: Die Menge der Äquivalenzklassen $[x]_I$ wird mit R/I bezeichnet. R/I ist der "**Restklassenring**" von $R \mod I$ vermöge

$$[x]_I + [y]_I := [x + y]_I$$

 $[x]_I \cdot [Y]_I := [xy]_I$

Wohldefniniertheit wie in $\mathbb{Z}/m\mathbb{Z}$: 0 in \mathbb{R}/I ist $[0]_I = I$ und 1 in \mathbb{R}/I ist $[1]_I = 1 + I$. "Kanonische Projektion" $R \to R/I : x \mapsto [x]_I$ ist Ringhomomorphismus mit Kern= I.

- Homomorphiesatz für Ringe: Sei $f: R \to S$ surjektiver Ringhomomorphismus mit Kernf = I. Dann gilt $R/I \cong S$ vermöge $i: R/I \to S: [x]_I \mapsto f(x)$ mit $i \circ k = f$.
- Noether'scher Ring: R heißt "Noether'scher Ring", wenn jedes Ideal in R endl. erzeugt ist.
- **Primideal:** Sei R kommutativer Ring mit 1, P heißt "Primideal" in R, wenn $\forall a, b \in R$ mit $ab \in P$ gilt: a oder $b \in P$.

 $M \subsetneq R$ heißt "maximales Ideal" wenn gilt: M ist Ideal in R und wenn aus $I \supsetneq M$, $I \ne M$, I Ideal, folgt I = R.

R sei kommutativer Ring mit 1:

- 1. $p \subseteq R$ Primideal $\Rightarrow R/P$ Integritätsbereich
- 2. $M \subseteq R$ maximales Ideal $\Rightarrow R/M$ Körper
- 3. $M \subseteq R$ maximales Ideal $\Rightarrow M$ Primideal
- 4. Jedes Ideal $I \subseteq R$ ist in einem maximalen Ideal enthalten.
- Zorn'sches Lemma: Solche vollst. geordneten Ketten besitzen maximale Elemente. ??

3.3 Polynome

- Polynomfuntion: Sei R kommutativer Ring mit 1 und $f: R \to R: x \mapsto f(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0$, alle $a_i \in R$.
- **Polynome:** Polynome sind Funktionen $\mathbb{N} \cup \{0\} \to R : j \mapsto a_j$, die für alle bis auf endlich viele j erfüllen $a_j = 0$. Jede solche Abbildung $\mathbb{N}_0 \to \mathbb{R}$ wird durch $a_n x^n + \ldots + a_0$ gekennzeichnet. (x "Variable" oder "Unbestimmte")

Bezüglich der Addition bilden die Polynome eine abelsche Gruppe mit dem Nullpolynom als Null $(i \mapsto 0 \,\forall i)$.

Das Produkt sei gegeben durch die "Faltung" von $f: j \mapsto a_j$ und $g:\mapsto b_j$:

$$(f * g)(k) := \sum_{j=0}^{k} f(j)g(k-j)$$

- Grad eines Polynoms: $n = \max\{j \in \mathbb{N}_0 \mid f(j) = a_j \neq 0\}$ für $f \not\equiv 0$. grad $0:=-\infty \Rightarrow G_n = f(n)$ "führender Koeffizient" von f. Sei R Integritätsbereich, $f, g \in R[x]$. Dann gilt:

$$\operatorname{grad}(f \cdot g) = \operatorname{grad} f + \operatorname{grad} g$$

also ist R[x] selbst Integritätsbereich. Dieser Satz gilt nicht für Polynomfunktionen der Art "Bilde in $\mathbb{F}_2[x]$ $x \cdot (x+1)$ ".

- Symmetrie, Elementarsymmetrische Polynome: R komm. Ring mit $1, f(x_1, \ldots, x_n) \in R[x_1, \ldots, x_n]$ heißt "symmetrisch", wenn $f(x_1, \ldots, x_n) = f(x_{\sigma(1)}, \ldots, x_{\sigma(n)}) \quad \forall \sigma \in S_n$. Polynome der Form $s_1(x_1, \ldots, x_n) := x_1 + x_2 \ldots + x_n$ heissen "Elementarsymmetrische Polynome" Sei $f \in R[x_1, \ldots, x_n]$ symmetrisches Polynom. Dann existiert ein eindeutig bestimmtes $q(t_1, \ldots, t_n) \in R[t_1, \ldots, t_n]$ mit

$$f(x_1,\ldots,x_n) = q(s_1(x_1,\ldots,x_n),s_2(x_1,\ldots,x_n),\ldots,s_n(x_1,\ldots,x_n))$$

- Diskriminante: Diskriminante von

$$f(x) = (x - x_1) \cdot (x - x_2) \cdot \dots \cdot (x - x_n) = x^n - s_1 x^{n-1} + s_2 x^{n-2} + \dots + (-1)^n s_n \text{ ist } D(f) := \prod_{i < kj < n} (x_j - x_i)^n$$

ein symmetrisches Polynom in x_1, \ldots, x_n .

Die elementarsymmetrischen Funktionen s_1, \ldots, s_n sind "algebraisch unabhängig", d.h. für $h(t_1, \ldots, t_n) \in R[t_1, \ldots, t_n]$ ist $h(s_1(x_1, \ldots, x_n), s_n(x_1, \ldots, x_n)) = 0 \Leftrightarrow h \equiv 0$.

3.4 Euklidische und faktorielle Ringe

Sei K Körper, a = a(x) und $b = b(x) \neq 0$ Polynome in K[x]. Dann gibt es Polynome q = q(x) und $r = r(x) \in K[x]$ mit a = qb + r und gradr < gradb. Sei R Integritätsbereich \Rightarrow die Einheitengruppe von $(R[x])^* = R^*$, also $(K[x])^* = K^*$.

- Normiert: $f(x) \in K[x]$ heißt "normiert" $\Leftrightarrow f(x) = x^n + a_{n-1}x^{n-1} + \ldots + a_0$
- **Primpolynom:** f(x) heißt "Primpolynom" $\Leftrightarrow f$ ist normiert und besitzt keine Teiler q außer $q \in K^*$ oder K^*f .

Z.B. sind in jedem Körper lineare normierte Polynome x-a Primpolynome. Abhängig von K kann es viele weiter Polynome geben, z.B. $x^2+1\in\mathbb{R}[x]$, weil $x^2+1=(x+a)(x+b)$ $a,b\not\in\mathbb{R}$. Sei K Körper. Im Polynomring K[x]

- 1. ist jedes Ideal ist Hauptideal.
- 2. gibt es für $a, b \in K[x]$ einen (normierten) ggT.

- 3. der sich durch höchstens $n = \min\{\operatorname{grad}a, \operatorname{grad}b\}$ Divisionen mit Rest bestimmen läßt.
- 4. $\forall a, b \in K[x] \ \forall Primpolynome \ p \in K[x] \ gilt: \ p \mid ab \Rightarrow p \mid a \ oder \ p \mid b$.
- 5. jedes Polynom $(\neq 0)$ lässt sich in ein Produkt von Einheiten und Primpolynomen zerlegen, und zwar eindeutig bis auf die Reihenfolge.

Sei R Integritätsbereich, $a(x) \in R[x]$, grada = n, dann hat a höchstens n Nullstellen in R (d.h. $x_j \in R$ mit $a(x_j) = 0$, hier a aufgefaßt als Polynomfunktion $R \to R$). Wenn R = K Körper, \exists Bijektion $x_j \mapsto (x - x_j)$ zwischen Nullstellen von a und linearen Primpolynomen-Teilern $(x - x_j) \mid a(x)$. Für beliebige Integritätsbereiche via $R[x] \subseteq K[x]$.

- ! Der Satz ist falsch für R mit Nullteilern: $a(x) = x^2 1$ in $R = \mathbb{Z}/8\mathbb{Z}$, hat Nullstellen $x = [1]_8, [3]_8, [5]_8, [7]_8$. grad $fg = \operatorname{grad} f \operatorname{grad} g$ falsch, wenn R Nullteiler besitzt.
- ! $a(x) \in K[x]$ verschwindet in $y \in K$ "von der Ordnung n" $\Leftrightarrow (x-y)^n \mid a(x)$ und $(x-y)^{n+1} \nmid a(x)$, geschrieben $\nu_y(a(x)) = n$.

Involution für zyklische Gruppen $(\mathbb{Z}/p\mathbb{Z}, +)$ p prim $\sigma : \mathbb{Z}/p\mathbb{Z} \to \mathbb{Z}/p\mathbb{Z}$ Automorphismus mit $\sigma \neq id, \sigma^2 = id$ (\Rightarrow Klassifikation der Gruppen der Ordnung 2p). σ kann nur von der Form sein $[n]_p \mapsto [-n]_p$.

- Satz von Wilson: In $\mathbb{F}_p = \mathbb{Z}/p\mathbb{Z}$ ist $(p-1)! \equiv -1 \mod p$.
- Euklidischer Ring, Gradfunktion: Ein Integritätsbereich heißt "euklidischer Ring", wenn eine "Gradfunktion" g auf R existiert mit $g: R \setminus \{0\} \to \mathbb{N}_0$ mit der Eigenschaft: $\forall a,b \in R \setminus \{0\} \exists q,r \in R$ mit a=bq+r und dabei r=0 oder gradr <gradb erfüllt. Solche euklidischen Ringe sind Hauptidealringe und besitzen eine eindeutige Primfaktorzerlegung (R euklidisch $\Rightarrow R$ Hauptidealring \Rightarrow eind. Primfaktorzerlegung). (Es genügt sogar, daß die Grade eine diskrete, nach unten beschränkte Wertemenge durchlaufen.)
- Irreduzibel: p ∈ R, p ≠ 0, p ∉ R* heißt "irreduzibel" ⇔ alle Teiler t | p sind ∈ R* oder ∈ R*p. In R existiert eine Zerlegung in irr. Elemente ⟨a⟩c⟨t₁⟩c⟨t₂⟩c... (t₂ | t₁ | a oBdA echte Teiler, d.h. echte Inklusionen echt aufsteigende Kette von Hauptidealen).
 In R gibt es eine Eindeutigkeit der Primfaktorzerlegung genau dann, wenn
 - 1. Jede aufsteigende Kette von Hauptidealen besitzt ein maximales Element.
 - 2. Jedes irreduzible Element ist prim (Bsp.: $R = \mathbb{Z}[x]$).

In Hauptidealringen ist jedes irreduzible Element prim.

4 Arithmetik modulo n

Ziel ist die Lösbarkeit von $x^m \equiv c(n)$ insbesondere von $x^2 \equiv c(n)$. Da $\mathbb{Z}/n\mathbb{Z} = \pi\mathbb{Z}/p^{\nu_r(n)}\mathbb{Z}$ bekannt ist, muß nun die Lösbarkeit von mod p^{ν} betrachtet werden. Ermittle dafür die gruppentheoretische Struktur von $(\mathbb{Z}/p\mathbb{Z})^*$ bzw. $(\mathbb{Z}/p^{\nu}\mathbb{Z})^*$.

4.1 Multiplikative zahlentheoretische Funktionen

- Multiplikative zahlentheoretische Funktion: $f: \mathbb{N} \to \mathbb{C}$ heißt multiplikative zahlentheoretische Funktion $\Leftrightarrow f(1) = 1$ und $f(n \cdot m) = f(n) \cdot f(m) \ \forall (n,m) = 1$. f ist eindeutig bestimmt durch die Werte $f(p^s)$.

Bsp: Identität, Einsfunktion, Teilerfunktion $(\sigma_0(n) := \#\{d \mid n \mid d \in \mathbb{N}\})$, Teilersummenfunktion $(\sigma_1(n) := \Sigma_{d \mid n, d \in \mathbb{K}} d \mid \sigma_1(p^{\nu}) = \Sigma_{\mu=0}^{\nu} p^{\mu} = \frac{p^{\nu+1}-1}{p-1}$, also $\sigma_1(nm) = \sigma_1(n) \cdot \sigma_1(m)$ und $\sigma_k(n) := \Sigma_{d \mid n} d^k$.

- Multplikativität: Seien f, g mult. zth. Funktionen und

$$(f*g)(n) := \Sigma_{d|n} f(d)g\left(\frac{n}{d}\right)$$

f * g ist multiplikativ! und (f * g)(1) = f(1)g(1) = 1. (z.B. g = 1 und $g = \varepsilon$)

4.2 Die Struktur der primen Restklassengruppe

Sei $n = p_1^{\nu_1} \cdot \ldots \cdot p_s^{\nu_s} \Rightarrow (\mathbb{Z}/n\mathbb{Z})^* = \Pi(\mathbb{Z}/p_i^{\nu_i}\mathbb{Z})^*$. Wie sieht also $(\mathbb{Z}/p^n\mathbb{Z})^*$ aus? Ordnung $\varphi(p^n) = p^n - p^{n-1}$

- **Primitivwurzel:** Die multiplikative Gruppe \mathbb{F}^* eines endlichen Körpers ist zyklisch. Insbesondere gilt das für $f = \mathbb{Z}/p\mathbb{Z}$, $p \in d\mathbb{P}$. Ein erzeugendes Element $[k]_p$ heißt dann "Primitivwurzel" (mod p).

p sei Primzahl, $s \in \mathbb{N}$, $a, b \in \mathbb{Z}$. Dann gilt

- 1. $a \equiv b \mod p^s \implies a^p \equiv b^p \mod p^{s+1}$
- 2. $s \ge 2$, $p \ne 2 \implies (1 + ap)^{p^{s-2}} \equiv 1 + ap^{s-1} \mod p^s$

 $(\mathbb{Z}/p\mathbb{Z})^*$ ist zyklisch = $\langle [a]_p \rangle$ mit a "Primitivwurzel mod p"

$$\begin{cases} \Sigma_{d|n}\varphi(d)=n\\ \text{In K\"{o}rpern }\mathbb{F}\text{ hat }x^a-1=0\text{ genau }d\text{ Nullstellen, wenn }d\mid\mathbb{F}^* \end{cases}$$

In jedem Körper ist eine endliche mult. Untergruppe von F[∗] zyklisch!

- 1. $a \equiv b(p^s) \Rightarrow a^p \equiv b^p \mod p^{s+1}$
- 2. $s \ge 2, p \not\equiv 2 \Rightarrow (1 + ap)^{p^{s-2}} \equiv 1 + ap^{s-1}(p^s)$
- 3. $p \nmid a, b \neq 2, s > 2 \Rightarrow \text{In } (\mathbb{Z}/p^s\mathbb{Z})^* \text{ ist } \text{ord}[1+ap]_{p^s} = p^{s-1}$

Sei p > 2 prim, $s \in \mathbb{N}$. Dann ist $(\mathbb{Z}/p^s\mathbb{Z})^*$ zyklisch.

 $(\mathbb{Z}/2^s\mathbb{Z})^*$ ist zyklisch für s=1 und 2 ([1]₂ bzw. {[1]₄, [-1]₄}). Für s>2 ist $(\mathbb{Z}/2^s\mathbb{Z})^*=\{[(-1)^bs^e]_{s^s}\mid b=0,1,c=0,1,\ldots,2^{s-1}-1\}\cong \langle [-1]_{2^s}\rangle\times \langle [5]_{2^s}\rangle$ ($\mathbb{Z}/m\mathbb{Z}$)* zyklisch $\Leftrightarrow m=2,4,p^s$ oder $2p^s$ (p ungerade prim).

Für $b \not\equiv 0(p)$ ist $x^n \equiv b \mod p^s$ genau dann lösbar, wenn $b^{z \cdot \frac{(p-1)p^{s-1}}{(n,(p-1)p^s-1)}} \equiv 1 \mod p^s$. $x^n \equiv b(n)$ ("b ist n-ter Potenzrest $\mod p$ ") $\Leftrightarrow b^{\frac{p-1}{(n,p-1)}} \equiv 1(p)$. Dazu:

- 1. n=2, p>2 prim: $x^2\equiv b$ lösbar ("b quadratischer Rest $\mod p$ ") $\Leftrightarrow b^{\frac{p-1}{2}}\equiv 1 \mod p$
- 2. n=2, p>2. b ist quad. Rest mod $p\Leftrightarrow b$ quad. Rest mod p^s , jeweils mit 2 Lösungen.
- 3. Sei $p \nmid b, p \nmid n \Rightarrow (n, p-1) = (n, (p-1)p^{s-1}) \Rightarrow x^n \equiv b \mod p^s$ lösbar $\Leftrightarrow x^n \equiv b \mod p$ lösbar, mit gleicher Lösungsanzahl.

$$(\mathbb{Z}/2^{s}\mathbb{Z})^{*} = \begin{cases} \{[1]\} & \text{für } s = 1\\ \{\pm[1]\} & \text{für } s = 2\\ \langle [-1]_{2^{s}} \rangle \times \langle [5]_{2^{s}} \rangle & \text{sonst} \end{cases}$$

4. Sei $2 \nmid b, s > 2, \in \mathbb{N}$. Dann gilt: wenn $2 \nmid n \Rightarrow x^n \equiv b \mod 2^s$ eindeutig in $(\mathbb{Z}/2^s\mathbb{Z})^*$ lösbar.

Wenn $n=2 \Rightarrow x^n \equiv b \mod 2^s$ genau dann lösbar, wenn $b \equiv 5^{2c}(2^s) \Leftrightarrow b \equiv 1 \mod 8$.

 $\frac{a}{b}$ besitzt eine abbrechende Dezimalbruchentwicklung $\Leftrightarrow b$ besitzt nur Primfaktoren 2 und 5. Wenn nicht, schreibe $b = b' \cdot c$ mit $b' \mid 10^v, (c, 10) = 1 \rightarrow \exists \text{Darstellung } \frac{a}{b} = \frac{s}{10^v} + \frac{d}{c}$. (Funktioniert für jedes andere Ziffernsystem anstelle des Dezimalsystems ebenso!)

4.3 Quadratische Reste

- Quadratischer Rest: Sei (b, N) = 1. b "quadratischer Rest" mod $N \Leftrightarrow x^2 \equiv b(N)$ lösbar $\Leftrightarrow b$ quad. Rest mod allen p^s (Primpotenzteiler von N). Andernfalls heißt $b \in (\mathbb{Z}/N\mathbb{Z})^*$ "quadratischer Nichtrest" mod N. Es gilt.
 - 1. b quadratischer Rest $\mod 2 \Leftrightarrow b \equiv 1(2)$ b quad. Rest $\mod 4 \Leftrightarrow b \equiv 1(4)$
 - 2. b quadratischer Rest mod $2, s > 3 \Leftrightarrow b \equiv 1(8)$
 - 3. Sei $s \in \mathbb{N}, p > 2$ prim, $p \nmid b$, b quad. Rest mod $p^s \Leftrightarrow b$ quadr. Rest mod p
 - 4. Die quad. Reste $b \mod p, p > 2$ prim, bilden eine Untergruppe vom Index 2 in $(\mathbb{Z}/p\mathbb{Z})^*$, charakterisiert durch $b^{\frac{p-1}{2}} \equiv 1(p)$
 - 5. Für p > 2 prim sei das "**Legendresymbol**" definiert durch

$$\left(\frac{b}{p}\right) := \begin{cases} 1, & \text{wenn } b \text{ quad. Rest} \\ -1, & \text{wenn } b \text{ quad. Nichtrest} \\ 0, & \text{wenn } b \equiv 0 \mod p \end{cases}$$

- $\left(\frac{b}{p}\right) \equiv b^{\frac{p-1}{2}} \mod p$ ist das "Eulersche Kriterium".
- 6. Das Legendresymbol ist multiplikativ zahlentheoretische Funktion $\mathbb{Z} \to \{0, 1, -1\} : b \mapsto (\frac{b}{p})$. Der Wert hängt nur von $b \mod p$ ab, definiert Gruppenhomomorphismus $(\mathbb{Z}/p\mathbb{Z})^* \to \{\pm 1\}$. Kern ist der quadr. Rest $\mod p$.
- Erstes Ergänzungsgesetz zum quadratischen Reziprozitätsgestz: Für p>2 prim ist

$$\left(\frac{-1}{p} = (-1)^{\frac{p-1}{2}}\right) = \begin{cases} +1, & p \equiv 1(4) \\ -1, & p \equiv -1(4) \end{cases}$$

In jeder primen Restklasse mod 4 liegen unendlich viele Primzahlen.

- Satz von Gauß: Sei p prim $< 2, p \nmid a \in \mathbb{Z}$ und $s := \{1, 2, \dots, \frac{p-1}{2}\}, -s := \{-1, -2, \dots, -\frac{p-1}{2}\}$. $s \cup -s$ bilden das "absolut kleinste Restsystem" von $(\mathbb{Z}/p\mathbb{Z})^*$. μ sei die Anzahl der Repräsentanten aus -s, welche $\equiv \mod p$ zu einer Restklasse $a, 2a, 3a, \dots, \frac{p-1}{2}a$. Dann ist $\left(\frac{a}{p}\right) = (-1)^{\mu}$.
- Zweites Ergänzungsgesetz: Sei p > 2 prim $\Rightarrow \left(\frac{2}{p}\right) = (-1)^{\frac{p^2-1}{8}} = \begin{cases} 1 & \Leftrightarrow p \equiv \pm 1(8) \\ -1 & \Leftrightarrow p \equiv \pm 3(8) \end{cases}$
- Quadratisches Reziprozitätsgesetz: Seien $p \neq q$ Primzahlen $\neq 2$, dann ist $\left(\frac{p}{q}\right) = (-1)^{\frac{p-1}{2} \cdot \frac{q-1}{2}} \left(\frac{q}{p}\right)$ außer wenn $p \equiv q \equiv 3(4)$.
- Jacobisymbol: $b \in \mathbb{N}, 2 \nmid b \text{ und } b = p_1 \cdot p_2 \cdot \ldots \cdot p_m$ Primfaktorzerlegung $\left(\frac{a}{b}\right) = \left(\frac{a}{p_1}\right) \cdot \left(\frac{a}{p_2}\right) \cdot \ldots \cdot \left(\frac{a}{p_m}\right)$. Im Fall $b \in \mathbb{P}, b = p$, simmt es mit dem Legendresymbol überein. $(a, b) > 1 \Rightarrow \left(\frac{a}{b}\right) = 0$. Seien $a, b \in \mathbb{N}$ und ungerade und teilerfremd. dann gilt

$$\left(\frac{-1}{b}\right) = (-1)^{\frac{b-1}{2}} \quad \left(\frac{2}{b}\right) = (-1)^{\frac{b^2-1}{8}} \quad \left(\frac{a}{b}\right) \left(\frac{b}{a}\right) = (-1)^{\frac{a-1}{2} \cdot \frac{b-1}{2}}$$

Die Rechenschritte im Algorithmus zur Berechnung von $(\frac{a}{p})$ können durchgeführt werden unabh. davon, ob Zähler bzw. Nenner prim sind!

18

4.4 Verzweigung von Primzahlen

Was hat die Zahlentheorie in O_d zu tun mit der Zahlentheorie in \mathbb{Z} ?

- algebraisch konjugierte Element zu β : Für $\beta = r + s\sqrt{d}$ $(r, s \in \mathbb{Q})$ ist dies $\beta' := r s\sqrt{d}$. Die Abbildung $\beta \mapsto \beta'$ ist
 - 1. ein Körper-Automorphismus von $\mathbb{Q}(\sqrt{d})$, der genau die Elemente von \mathbb{Q} fest läßt.
 - 2. Ein Automorphismus von O_d , der genau die Elemente von $\mathbb Z$ invariant läßt.
 - 3. erhält Teilbarkeit, Einheiten, irreduzible Elemente.

Die "Norm" von β ist

$$N(\beta) := \beta \beta' = (r + s\sqrt{d})(r - s\sqrt{d}) = r^2 - s^2 d \in \mathbb{Q}$$

bildet $\mathbb{Q}(\sqrt{s})$ in \mathbb{Q} ab und O_d in \mathbb{Z} , und N verhält sich multiplikativ, d.h.

$$N(\gamma\beta) = \gamma\beta(\gamma\beta)' = \gamma\beta\gamma'\beta' = N(\gamma)N(\beta)$$

Ferner gilt $r \in \mathbb{Q} \Rightarrow N(r) = r^2$, insbes. $N(1) = 1 \Rightarrow$ die Norm bildet Einheiten auf ± 1 ab, denn $\beta \mid 1$ heißt: $\exists \gamma : \beta \gamma = 1 \Rightarrow \underbrace{N(\beta)}_{\in \mathbb{Z}} \underbrace{N(\gamma)}_{\in \mathbb{Z}} = N(1) = 1$. und für $\beta, \gamma \in O_d$ ist $N(\beta), N(\gamma) = \pm 1$

Allgemeiner: $\beta \mid \alpha, \beta, \alpha \in O_d \Rightarrow N(\beta) \mid N(\alpha)$ in \mathbb{Z} .

Sei O_d Ring der ganzen Zahlen in $\mathbb{Q}(\sqrt{d})$, in O_d gelte die eindeutige Primfaktorzerlegung. Sei p Primzahl in $\mathbb{Z} \subseteq O_d$. p besitzt in O_d die folgenden möglichen Primfaktorzerlegungen:

- 1. p ist auch prim in O_d ("p ist träge")
- 2. $p = \pm \pi \cdot \pi = \pm N(\pi)$ für zwei Primzahlen, die algebraisch konjugiert sind, π, π' , die nicht zueinander assoziiert sind, d.h. sich nicht nur durch eine Einheit unterscheiden
- 3. $p \backsim \pi^2$ für ein Primelement $\pi \in O_d$, d.h. $p \in \varepsilon \pi^2$ mit $\varepsilon \in O_d^* \Leftrightarrow \varepsilon \mid 1$.

Jedes Primelement $\pi \in O_d$ ist Teiler einer eindeutig best. rationalen Primzahl $p \in \mathbb{Z}$.